372 research outputs found
Study of the dependence of 198Au half-life on source geometry
We report the results of an experiment to determine whether the half-life of
\Au{198} depends on the shape of the source. This study was motivated by recent
suggestions that nuclear decay rates may be affected by solar activity, perhaps
arising from solar neutrinos. If this were the case then the -decay
rates, or half-lives, of a thin foil sample and a spherical sample of gold of
the same mass and activity could be different. We find for \Au{198},
, where
is the mean half-life. The maximum neutrino flux at the sample in our
experiments was several times greater than the flux of solar neutrinos at the
surface of the Earth. We show that this increase in flux leads to a significant
improvement in the limits that can be inferred on a possible solar contribution
to nuclear decays.Comment: 5 pages, 1 figur
Some flows in shape optimization
Geometric flows related to shape optimization problems of Bernoulli type are
investigated. The evolution law is the sum of a curvature term and a nonlocal
term of Hele-Shaw type. We introduce generalized set solutions, the definition
of which is widely inspired by viscosity solutions. The main result is an
inclusion preservation principle for generalized solutions. As a consequence,
we obtain existence, uniqueness and stability of solutions. Asymptotic behavior
for the flow is discussed: we prove that the solutions converge to a
generalized Bernoulli exterior free boundary problem
Electromagnetic Response of Layered Superconductors with Broken Lattice Inversion Symmetry
We investigate the macroscopic effects of charge density waves (CDW) and
superconductivity in layered superconducting systems with broken lattice
inversion symmetry (allowing for piezoelectricity) such as two dimensional (2D)
transition metal dichalcogenides (TMD). We work with the low temperature time
dependent Ginzburg-Landau theory and study the coupling of lattice distortions
and low energy CDW collective modes to the superconducting order parameter in
the presence of electromagnetic fields. We show that superconductivity and
piezoelectricity can coexist in these singular metals. Furthermore, our study
indicates the nature of the quantum phase transition between a commensurate CDW
phase and the stripe phase that has been observed as a function of applied
pressure.Comment: 9 pages, 1 figure. Final version. Accepted in Phys.Rev.
Hard Scattering Factorization from Effective Field Theory
In this paper we show how gauge symmetries in an effective theory can be used
to simplify proofs of factorization formulae in highly energetic hadronic
processes. We use the soft-collinear effective theory, generalized to deal with
back-to-back jets of collinear particles. Our proofs do not depend on the
choice of a particular gauge, and the formalism is applicable to both exclusive
and inclusive factorization. As examples we treat the pi-gamma form factor
(gamma gamma* -> pi^0), light meson form factors (gamma* M -> M), as well as
deep inelastic scattering (e- p -> e- X), Drell-Yan (p pbar -> X l+ l-), and
deeply virtual Compton scattering (gamma* p -> gamma(*) p).Comment: 35 pages, 4 figures, typos corrected, journal versio
Peregrine falcon survival rates derived from a long-term study at a migratory and overwintering area in coastal Washington
Heavy quarkonium: progress, puzzles, and opportunities
A golden age for heavy quarkonium physics dawned a decade ago, initiated by
the confluence of exciting advances in quantum chromodynamics (QCD) and an
explosion of related experimental activity. The early years of this period were
chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in
2004, which presented a comprehensive review of the status of the field at that
time and provided specific recommendations for further progress. However, the
broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles
could only be partially anticipated. Since the release of the YR, the BESII
program concluded only to give birth to BESIII; the -factories and CLEO-c
flourished; quarkonium production and polarization measurements at HERA and the
Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the
deconfinement regime. All these experiments leave legacies of quality,
precision, and unsolved mysteries for quarkonium physics, and therefore beg for
continuing investigations. The plethora of newly-found quarkonium-like states
unleashed a flood of theoretical investigations into new forms of matter such
as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the
spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b},
and b\bar{c} bound states have been shown to validate some theoretical
approaches to QCD and highlight lack of quantitative success for others. The
intriguing details of quarkonium suppression in heavy-ion collisions that have
emerged from RHIC have elevated the importance of separating hot- and
cold-nuclear-matter effects in quark-gluon plasma studies. This review
systematically addresses all these matters and concludes by prioritizing
directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K.
Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D.
Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A.
Petrov, P. Robbe, A. Vair
Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET
The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR
On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection
A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)
Reproductive biology of Artibeus fimbriatus Gray 1838 (Chiroptera) at the southern limit of its geographic range
- …
