180 research outputs found
Risk of infection and adverse outcomes among pregnant working women in selected occupational groups: A study in the Danish National Birth Cohort
<p>Abstract</p> <p>Background</p> <p>Exposure to infectious pathogens is a frequent occupational hazard for women who work with patients, children, animals or animal products. The purpose of the present study is to investigate if women working in occupations where exposure to infections agents is common have a high risk of infections and adverse pregnancy outcomes.</p> <p>Methods</p> <p>We used data from the Danish National Birth Cohort, a population-based cohort study and studied the risk of Infection and adverse outcomes in pregnant women working with patients, with children, with food products or with animals. The regression analysis were adjusted for the following covariates: maternal age, parity, history of miscarriage, socio-occupational status, pre-pregnancy body mass index, smoking habit, alcohol consumption.</p> <p>Results</p> <p>Pregnant women who worked with patients or children or food products had an excess risk of sick leave during pregnancy for more than three days. Most of negative reproductive outcomes were not increased in these occupations but the prevalence of congenital anomalies (CAs) was slightly higher in children of women who worked with patients. The prevalence of small for gestational age infants was higher among women who worked with food products. There was no association between occupation infections during pregnancy and the risk of reproductive failures in the exposed groups. However, the prevalence of CAs was slightly higher among children of women who suffered some infection during pregnancy but the numbers were small.</p> <p>Conclusion</p> <p>Despite preventive strategies, working in specific jobs during pregnancy may impose a higher risk of infections, and working in some of these occupations may impose a slightly higher risk of CAs in their offspring. Most other reproductive failures were not increased in these occupations.</p
Search for CP violation in D+→ϕπ+ and D+s→K0Sπ+ decays
A search for CP violation in D + → ϕπ + decays is performed using data collected in 2011 by the LHCb experiment corresponding to an integrated luminosity of 1.0 fb−1 at a centre of mass energy of 7 TeV. The CP -violating asymmetry is measured to be (−0.04 ± 0.14 ± 0.14)% for candidates with K − K + mass within 20 MeV/c 2 of the ϕ meson mass. A search for a CP -violating asymmetry that varies across the ϕ mass region of the D + → K − K + π + Dalitz plot is also performed, and no evidence for CP violation is found. In addition, the CP asymmetry in the D+s→K0Sπ+ decay is measured to be (0.61 ± 0.83 ± 0.14)%
NKG2D expression in CD4+ T lymphocytes as a marker of senescence in the aged immune system
Human aging is characterized by changes in the immune system which have a profound impact on the T-cell compartment. These changes are more frequently found in CD8+ T cells, and there are not well-defined markers of differentiation in the CD4+ subset. Typical features of cell immunosenescence are characteristics of pathologies in which the aberrant expression of NKG2D in CD4+ T cells has been described. To evaluate a possible age-related expression of NKG2D in CD4+ T cells, we compared their percentage in peripheral blood from 100 elderly and 50 young adults. The median percentage of CD4+ NKG2D+ in elders was 5.3% (interquartile range (IR): 8.74%) versus 1.4% (IR: 1.7%) in young subjects (p < 0.3 × 10−10). CD28 expression distinguished two subsets of CD4+ NKG2D+ cells with distinct functional properties and differentiation status. CD28+ cells showed an immature phenotype associated with high frequencies of CD45RA and CD31. However, most of the NKG2D+ cells belonged to the CD28null compartment and shared their phenotypical properties. NKG2D+ cells represented a more advanced stage of maturation and exhibited greater response to CMV (5.3 ± 3.1% versus 3.4 ± 2%, p = 0.037), higher production of IFN-γ (40.56 ± 13.7% versus 24 ± 8.8%, p = 0.015), lower activation threshold and reduced TREC content. Moreover, the frequency of the CD4+ NKG2D+ subset was clearly related to the status of the T cells. Higher frequencies of the NKG2D+ subset were accompanied with a gradual decrease of NAIVE and central memory cells, but also with a higher level of more differentiated subsets of CD4+ T cells. In conclusion, CD4+ NKG2D+ represent a subset of highly differentiated T cells which characterizes the senescence of the immune system
Updated measurements of exclusive J/ψ and ψ(2S) production cross-sections in pp collisions at √s = 7 TeV
The differential cross-section as a function of rapidity has been measured for the exclusive production of J/ψ and ψ(2S) mesons in proton–proton collisions at √s = 7 TeV, using data collected by the LHCb experiment, corresponding to an integrated luminosity of 930 pb−1. The cross-sections times branching fractions to two muons having pseudorapidities between 2.0 and 4.5 are measured to be where the first uncertainty is statistical and the second is systematic. The measurements agree with next-to-leading order QCD predictions as well as with models that include saturation effects
First Measurement of the Charge Asymmetry in Beauty-Quark Pair Production
The difference in the angular distributions between beauty quarks and antiquarks, referred to as the charge asymmetry, is measured for the first time in b (b) over bar pair production at a hadron collider. The data used correspond to an integrated luminosity of 1.0 fb(-1) collected at 7 TeV center-of-mass energy in proton-proton collisions with the LHCb detector. The measurement is performed in three regions of the invariant mass of the b (b) over bar system. The results obtained are A(C)(b (b) over bar) (40 10(5) GeV/c(2)) = 1.6 +/- 1.7 +/- 0.6%,where A(C)(b (b) over bar) is defined as the asymmetry in the difference in rapidity between jets formed from the beauty quark and antiquark, where in each case the first uncertainty is statistical and the second systematic. The beauty jets are required to satisfy 2 20 GeV, and have an opening angle in the transverse plane Delta phi > 2.6 rad. These measurements are consistent with the predictions of the standard model
Observation of B+c → D0K+ decays
Using proton-proton collision data corresponding to an integrated luminosity of 3.0 fb−1, recorded by
the LHCb detector at center-of-mass energies of 7 and 8 TeV, the B+
c → D0K+ decay is observed with a
statistical significance of 5.1 standard deviations. By normalizing to B+ → D¯ 0π+ decays, a measurement of
the branching fraction multiplied by the production rates for B+
c relative to B+ mesons in the LHCb
acceptance is obtained, R
D
0
K
=
(
f
c
/
f
u
)
×
B
(
B
+
c
→
D
0
K
+
)
=
(
9.
3
+
2.8
−
2.5
±
0.6
)
×
10
−
7, where the first
uncertainty is statistical and the second is systematic. This decay is expected to proceed predominantly
through weak annihilation and penguin amplitudes, and is the first B+
c decay of this nature to be observed
Observation of the decay Λ <sub>b</sub> <sup>0</sup> → ψ(2S)pπ<sup>−</sup>
International audienceThe Cabibbo-suppressed decay Λ → ψ(2S)pπ is observed for the first time using a data sample collected by the LHCb experiment in proton-proton collisions corresponding to 1.0, 2.0 and 1.9 fb of integrated luminosity at centre-of-mass energies of 7, 8 and 13 TeV, respectively. The ψ(2S) mesons are reconstructed in the μμ final state. The branching fraction with respect to that of the Λ → ψ(2S)pK decay mode is measured to b
Measurement of the B_{s}^{0}→μ^{+}μ^{-} Branching Fraction and Effective Lifetime and Search for B^{0}→μ^{+}μ^{-} Decays.
A search for the rare decays B_{s}^{0}→μ^{+}μ^{-} and B^{0}→μ^{+}μ^{-} is performed at the LHCb experiment using data collected in pp collisions corresponding to a total integrated luminosity of 4.4 fb^{-1}. An excess of B_{s}^{0}→μ^{+}μ^{-} decays is observed with a significance of 7.8 standard deviations, representing the first observation of this decay in a single experiment. The branching fraction is measured to be B(B_{s}^{0}→μ^{+}μ^{-})=(3.0±0.6_{-0.2}^{+0.3})×10^{-9}, where the first uncertainty is statistical and the second systematic. The first measurement of the B_{s}^{0}→μ^{+}μ^{-} effective lifetime, τ(B_{s}^{0}→μ^{+}μ^{-})=2.04±0.44±0.05 ps, is reported. No significant excess of B^{0}→μ^{+}μ^{-} decays is found, and a 95% confidence level upper limit, B(B^{0}→μ^{+}μ^{-})<3.4×10^{-10}, is determined. All results are in agreement with the standard model expectations
Rapid contraction of giant planets orbiting the 20-million-year-old star V1298 Tau
Current theories of planetary evolution predict that infant giant planets have large radii and very low densities before they slowly contract to reach their final size after about several hundred million years1,2. These theoretical expectations remain untested so far as the detection and characterization of very young planets is extremely challenging due to the intense stellar activity of their host stars3,4. Only the recent discoveries of young planetary transiting systems allow initial constraints to be placed on evolutionary models5,6,7. With an estimated age of 20 million years, V1298 Tau is one of the youngest solar-type stars known to host transiting planets; it harbours a system composed of four planets, two Neptune-sized, one Saturn-sized and one Jupiter-sized8,9. Here we report a multi-instrument radial velocity campaign of V1298 Tau, which allowed us to determine the masses of two of the planets in the system. We find that the two outermost giant planets, V1298 Tau b and e (0.64 ± 0.19 and 1.16 ± 0.30 Jupiter masses, respectively), seem to contradict our knowledge of early-stages planetary evolution. According to models, they should reach their mass–radius combination only hundreds of millions of years after formation. This result suggests that giant planets can contract much more quickly than usually assumed. © 2021, The Author(s), under exclusive licence to Springer Nature Limited.A.S.M. acknowledges financial support from the Spanish Ministry of Science and Innovation (MICINN) under the 2019 Juan de la Cierva Programme. J.I.G.H. acknowledges financial support from the Spanish MICINN under the 2013 Ramón y Cajal programme RYC-2013-14875. A.S.M., J.I.G.H., R.R., B.T.-P., N.L., M.R.Z.O., E.G.-A., J.A.C., P.J.A. and I.R. acknowledge financial support from the Spanish Ministry of Science and Innovation through projects AYA2017-86389-P, PID2019-109522GB-C53, PID2019-109522GB-C51, AYA2016-79425-C3-3-P, PID2019-109522GB-C52 and PGC2018-098153-B-C33. M.D. acknowledges financial support from the FP7-SPACE Project ETAEARTH (GA no. 313014). A.M., D.L., G.M., A.S. and S.D. acknowledge partial contribution from the agreement ASI-INAF no. 2018-16-HH.0. S.B., D.L., G.M. and D.T. acknowledge partial contribution from the agreement ASI-INAF no. 2021-5-HH.0. P.J.A. acknowledges financial support from the project SEV-2017-0709. S.D., V.D., S.B. and D.T. acknowledge support from the PRIN-INAF 2019 ‘Planetary systems at young ages’ (PLATEA). D.S.A. thanks the Leverhulme Trust for financial support. I.R. acknowledges the support of the Generalitat de Catalunya/CERCA programme. E.G.-A acknowledges support from the Spanish State Research Agency (AEI) project no. MDM-2017-0737 Unidad de Excelencia ‘María de Maeztu’ Centro de Astrobiología (CAB, CSIC/INTA). D.T. acknowledges the support of the Italian National Institute of Astrophysics (INAF) through the INAF Main Stream project ‘Ariel and the astrochemical link between circumstellar discs and planets’ (CUP: C54I19000700005). E.E.-B. acknowledges financial support from the European Union and the State Agency of Investigation of the Spanish Ministry of Science and Innovation (MICINN) under grant PRE2020-093107 of the Pre-Doc Program for the Training of Doctors (FPI-SO) through FEDER, FSE and FDCAN funds. This work is based on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated by the Fundación Galileo Galilei (FGG) of the Istituto Nazionale di Astrofisica (INAF) at the Observatorio del Roque de los Muchachos (La Palma, Canary Islands, Spain). CARMENES is an instrument at the Centro Astronómico Hispano-Alemán (CAHA) at Calar Alto (Almería, Spain), operated jointly by the Junta de Andalucía and the Instituto de Astrofísica de Andalucía (CSIC). This work is based on data obtained with the STELLA robotic telescopes in Tenerife, an AIP facility jointly operated by AIP and IAC. This work makes use of observations from the LCOGT network.Peer reviewe
- …