831 research outputs found
Theory of Star Formation
We review current understanding of star formation, outlining an overall
theoretical framework and the observations that motivate it. A conception of
star formation has emerged in which turbulence plays a dual role, both creating
overdensities to initiate gravitational contraction or collapse, and countering
the effects of gravity in these overdense regions. The key dynamical processes
involved in star formation -- turbulence, magnetic fields, and self-gravity --
are highly nonlinear and multidimensional. Physical arguments are used to
identify and explain the features and scalings involved in star formation, and
results from numerical simulations are used to quantify these effects. We
divide star formation into large-scale and small-scale regimes and review each
in turn. Large scales range from galaxies to giant molecular clouds (GMCs) and
their substructures. Important problems include how GMCs form and evolve, what
determines the star formation rate (SFR), and what determines the initial mass
function (IMF). Small scales range from dense cores to the protostellar systems
they beget. We discuss formation of both low- and high-mass stars, including
ongoing accretion. The development of winds and outflows is increasingly well
understood, as are the mechanisms governing angular momentum transport in
disks. Although outstanding questions remain, the framework is now in place to
build a comprehensive theory of star formation that will be tested by the next
generation of telescopes.Comment: 120 pages, to appear in ARAA. No changes from v1 text; permission
statement adde
Bifurcation Boundary Conditions for Switching DC-DC Converters Under Constant On-Time Control
Sampled-data analysis and harmonic balance analysis are applied to analyze
switching DC-DC converters under constant on-time control. Design-oriented
boundary conditions for the period-doubling bifurcation and the saddle-node
bifurcation are derived. The required ramp slope to avoid the bifurcations and
the assigned pole locations associated with the ramp are also derived. The
derived boundary conditions are more general and accurate than those recently
obtained. Those recently obtained boundary conditions become special cases
under the general modeling approach presented in this paper. Different analyses
give different perspectives on the system dynamics and complement each other.
Under the sampled-data analysis, the boundary conditions are expressed in terms
of signal slopes and the ramp slope. Under the harmonic balance analysis, the
boundary conditions are expressed in terms of signal harmonics. The derived
boundary conditions are useful for a designer to design a converter to avoid
the occurrence of the period-doubling bifurcation and the saddle-node
bifurcation.Comment: Submitted to International Journal of Circuit Theory and Applications
on August 10, 2011; Manuscript ID: CTA-11-016
Acceptance of technology-enhanced learning for a theoretical radiological science course: a randomized controlled trial
<p>Abstract</p> <p>Background</p> <p>Technology-enhanced learning (TEL) gives a view to improved education. However, there is a need to clarify how TEL can be used effectively. The study compared students' attitudes and opinions towards a traditional face-to-face course on theoretical radiological science and a TEL course where students could combine face-to-face lectures and e-learning modules at their best convenience.</p> <p>Methods</p> <p>42 third-year dental students were randomly assigned to the traditional face-to-face group and the TEL group. Both groups completed questionnaires before the beginning and after completion of the course on attitudes and opinions towards a traditional face-to-face lectures and technology-enhanced learning. After completion of the course both groups also filled in the validated German-language TRIL (Trierer Inventar zur Lehrevaluation) questionnaire for the evaluation of courses given at universities.</p> <p>Results</p> <p>Both groups had a positive attitude towards e-learning that did not change over time. The TEL group attended significantly less face-to-face lectures than the traditional group. However, both groups stated that face-to-face lectures were the basis for education in a theoretical radiological science course.</p> <p>The members of the TEL group rated e-mail reminders significantly more important when they filled in the questionnaire on attitudes and opinions towards a traditional face-to-face lectures and technology-enhanced learning for the second time after completion of the course.</p> <p>The members of the technology-enhanced learning group were significantly less confident in passing the exam compared to the members of the traditional group. However, examination results did not differ significantly for traditional and the TEL group.</p> <p>Conclusions</p> <p>It seems that technology-enhanced learning in a theoretical radiological science course has the potential to reduce the need for face-to-face lectures. At the same time examination results are not impaired. However, technology-enhanced learning cannot completely replace traditional face-to-face lectures, because students indicate that they consider traditional teaching as the basis of their education.</p
An empirical analysis of the determinants of mobile instant messaging appropriation in university learning
Published ArticleResearch on technology adoption often profiles device usability (such as
perceived usefulness) and user dispositions (such as perceived ease of use) as the
prime determinants of effective technology adoption. Since any process of technology
adoption cannot be conceived out of its situated contexts, this paper argues
that any pre-occupation with technology acceptance from the perspective of device
usability and user dispositions potentially negates enabling contexts that make
successful adoption a reality. Contributing to contemporary debates on technology
adoption, this study presents flexible mobile learning contexts comprising cost
(device cost and communication cost), device capabilities (portability, collaborative
capabilities), and learner traits (learner control) as antecedents that enable the
sustainable uptake of emerging technologies. To explore the acceptance and
capacity of mobile instant messaging systems to improve student performance, the
study draws on these antecedents, develops a factor model and empirically tests it
on tertiary students at a South African University of Technology. The study
involved 223 national diploma and bachelor’s degree students and employed partial
least squares for statistical analysis. Overall, the proposed model displayed a good
fit with the data and rendered satisfactory explanatory power for students’ acceptance
of mobile learning. Findings suggest that device portability, communication
cost, collaborative capabilities of device and learner control are the main drivers of
flexible learning in mobile environments. Flexible learning context facilitated by learner control was found to have a positive influence on attitude towards mobile
learning and exhibited the highest path coefficient of the overall model. The study
implication is that educators need to create varied learning opportunities that
leverage learner control of learning in mobile learning systems to enhance flexible
mobile learning. The study also confirmed the statistical significance of the original
Technology Acceptance Model constructs
Retinal and Cerebral Microvasculopathy: Relationships and Their Genetic Contributions
PURPOSE: Retinal microvasculopathy may reflect small vessel disease in the brain. Here we test
the relationships between retinal vascular parameters and small vessel disease, the influence
of cardiovascular risk factors on these relationships, and their common genetic background in
a monozygotic twin cohort.
METHODS: We selected 134 cognitively healthy individuals (67 monozygotic twin pairs) aged
‡60 years from the Netherlands Twin Register for the EMIF-AD PreclinAD study. We measured
seven retinal vascular parameters averaged over both eyes using fundus images analyzed with
Singapore I Vessel Assessment. Small vessel disease was assessed on MRI by a volumetric
measurement of periventricular and deep white matter hyperintensities. We calculated
associations between RVPs and WMH, estimated intratwin pair correlations, and performed
twin-specific analyses on relationships of interest.
RESULTS: Deep white matter hyperintensities volume was positively associated with retinal
tortuosity in veins (P ¼ 0.004) and fractal dimension in arteries (P ¼ 0.001) and veins (P ¼
0.032), periventricular white matter hyperintensities volume was positively associated with
retinal venous width (P ¼ 0.028). Intratwin pair correlations were moderate to high for all
small vessel disease/retinal vascular parameter variables (r ¼ 0.49–0.87, P < 0.001). Crosstwin
cross-trait analyses showed that retinal venous tortuosity of twin 1 could predict deep
white matter hyperintensities volume of the co-twin (r ¼ 0.23, P ¼ 0.030). Within twin-pair
differences for retinal venous tortuosity were associated with within twin-pair differences in
deep white matter hyperintensities volume (r ¼ 0.39, P ¼ 0.001).
CONCLUSIONS: Retinal arterial fractal dimension and venous tortuosity have associations with
deep white matter hyperintensities volume. Twin-specific analyses suggest that retinal venous
tortuosity and deep white matter hyperintensities volume have a common etiology driven by
both shared genetic factors and unique environmental factors, supporting the robustness of
this relationship
The Mitochondrial Ca(2+) Uniporter: Structure, Function, and Pharmacology.
Mitochondrial Ca(2+) uptake is crucial for an array of cellular functions while an imbalance can elicit cell death. In this chapter, we briefly reviewed the various modes of mitochondrial Ca(2+) uptake and our current understanding of mitochondrial Ca(2+) homeostasis in regards to cell physiology and pathophysiology. Further, this chapter focuses on the molecular identities, intracellular regulators as well as the pharmacology of mitochondrial Ca(2+) uniporter complex
The stellar and sub-stellar IMF of simple and composite populations
The current knowledge on the stellar IMF is documented. It appears to become
top-heavy when the star-formation rate density surpasses about 0.1Msun/(yr
pc^3) on a pc scale and it may become increasingly bottom-heavy with increasing
metallicity and in increasingly massive early-type galaxies. It declines quite
steeply below about 0.07Msun with brown dwarfs (BDs) and very low mass stars
having their own IMF. The most massive star of mass mmax formed in an embedded
cluster with stellar mass Mecl correlates strongly with Mecl being a result of
gravitation-driven but resource-limited growth and fragmentation induced
starvation. There is no convincing evidence whatsoever that massive stars do
form in isolation. Various methods of discretising a stellar population are
introduced: optimal sampling leads to a mass distribution that perfectly
represents the exact form of the desired IMF and the mmax-to-Mecl relation,
while random sampling results in statistical variations of the shape of the
IMF. The observed mmax-to-Mecl correlation and the small spread of IMF
power-law indices together suggest that optimally sampling the IMF may be the
more realistic description of star formation than random sampling from a
universal IMF with a constant upper mass limit. Composite populations on galaxy
scales, which are formed from many pc scale star formation events, need to be
described by the integrated galactic IMF. This IGIMF varies systematically from
top-light to top-heavy in dependence of galaxy type and star formation rate,
with dramatic implications for theories of galaxy formation and evolution.Comment: 167 pages, 37 figures, 3 tables, published in Stellar Systems and
Galactic Structure, Vol.5, Springer. This revised version is consistent with
the published version and includes additional references and minor additions
to the text as well as a recomputed Table 1. ISBN 978-90-481-8817-
- …