822 research outputs found

    Theory of Star Formation

    Full text link
    We review current understanding of star formation, outlining an overall theoretical framework and the observations that motivate it. A conception of star formation has emerged in which turbulence plays a dual role, both creating overdensities to initiate gravitational contraction or collapse, and countering the effects of gravity in these overdense regions. The key dynamical processes involved in star formation -- turbulence, magnetic fields, and self-gravity -- are highly nonlinear and multidimensional. Physical arguments are used to identify and explain the features and scalings involved in star formation, and results from numerical simulations are used to quantify these effects. We divide star formation into large-scale and small-scale regimes and review each in turn. Large scales range from galaxies to giant molecular clouds (GMCs) and their substructures. Important problems include how GMCs form and evolve, what determines the star formation rate (SFR), and what determines the initial mass function (IMF). Small scales range from dense cores to the protostellar systems they beget. We discuss formation of both low- and high-mass stars, including ongoing accretion. The development of winds and outflows is increasingly well understood, as are the mechanisms governing angular momentum transport in disks. Although outstanding questions remain, the framework is now in place to build a comprehensive theory of star formation that will be tested by the next generation of telescopes.Comment: 120 pages, to appear in ARAA. No changes from v1 text; permission statement adde

    Bifurcation Boundary Conditions for Switching DC-DC Converters Under Constant On-Time Control

    Full text link
    Sampled-data analysis and harmonic balance analysis are applied to analyze switching DC-DC converters under constant on-time control. Design-oriented boundary conditions for the period-doubling bifurcation and the saddle-node bifurcation are derived. The required ramp slope to avoid the bifurcations and the assigned pole locations associated with the ramp are also derived. The derived boundary conditions are more general and accurate than those recently obtained. Those recently obtained boundary conditions become special cases under the general modeling approach presented in this paper. Different analyses give different perspectives on the system dynamics and complement each other. Under the sampled-data analysis, the boundary conditions are expressed in terms of signal slopes and the ramp slope. Under the harmonic balance analysis, the boundary conditions are expressed in terms of signal harmonics. The derived boundary conditions are useful for a designer to design a converter to avoid the occurrence of the period-doubling bifurcation and the saddle-node bifurcation.Comment: Submitted to International Journal of Circuit Theory and Applications on August 10, 2011; Manuscript ID: CTA-11-016

    Acceptance of technology-enhanced learning for a theoretical radiological science course: a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Technology-enhanced learning (TEL) gives a view to improved education. However, there is a need to clarify how TEL can be used effectively. The study compared students' attitudes and opinions towards a traditional face-to-face course on theoretical radiological science and a TEL course where students could combine face-to-face lectures and e-learning modules at their best convenience.</p> <p>Methods</p> <p>42 third-year dental students were randomly assigned to the traditional face-to-face group and the TEL group. Both groups completed questionnaires before the beginning and after completion of the course on attitudes and opinions towards a traditional face-to-face lectures and technology-enhanced learning. After completion of the course both groups also filled in the validated German-language TRIL (Trierer Inventar zur Lehrevaluation) questionnaire for the evaluation of courses given at universities.</p> <p>Results</p> <p>Both groups had a positive attitude towards e-learning that did not change over time. The TEL group attended significantly less face-to-face lectures than the traditional group. However, both groups stated that face-to-face lectures were the basis for education in a theoretical radiological science course.</p> <p>The members of the TEL group rated e-mail reminders significantly more important when they filled in the questionnaire on attitudes and opinions towards a traditional face-to-face lectures and technology-enhanced learning for the second time after completion of the course.</p> <p>The members of the technology-enhanced learning group were significantly less confident in passing the exam compared to the members of the traditional group. However, examination results did not differ significantly for traditional and the TEL group.</p> <p>Conclusions</p> <p>It seems that technology-enhanced learning in a theoretical radiological science course has the potential to reduce the need for face-to-face lectures. At the same time examination results are not impaired. However, technology-enhanced learning cannot completely replace traditional face-to-face lectures, because students indicate that they consider traditional teaching as the basis of their education.</p

    An empirical analysis of the determinants of mobile instant messaging appropriation in university learning

    Get PDF
    Published ArticleResearch on technology adoption often profiles device usability (such as perceived usefulness) and user dispositions (such as perceived ease of use) as the prime determinants of effective technology adoption. Since any process of technology adoption cannot be conceived out of its situated contexts, this paper argues that any pre-occupation with technology acceptance from the perspective of device usability and user dispositions potentially negates enabling contexts that make successful adoption a reality. Contributing to contemporary debates on technology adoption, this study presents flexible mobile learning contexts comprising cost (device cost and communication cost), device capabilities (portability, collaborative capabilities), and learner traits (learner control) as antecedents that enable the sustainable uptake of emerging technologies. To explore the acceptance and capacity of mobile instant messaging systems to improve student performance, the study draws on these antecedents, develops a factor model and empirically tests it on tertiary students at a South African University of Technology. The study involved 223 national diploma and bachelor’s degree students and employed partial least squares for statistical analysis. Overall, the proposed model displayed a good fit with the data and rendered satisfactory explanatory power for students’ acceptance of mobile learning. Findings suggest that device portability, communication cost, collaborative capabilities of device and learner control are the main drivers of flexible learning in mobile environments. Flexible learning context facilitated by learner control was found to have a positive influence on attitude towards mobile learning and exhibited the highest path coefficient of the overall model. The study implication is that educators need to create varied learning opportunities that leverage learner control of learning in mobile learning systems to enhance flexible mobile learning. The study also confirmed the statistical significance of the original Technology Acceptance Model constructs

    Retinal and Cerebral Microvasculopathy: Relationships and Their Genetic Contributions

    Get PDF
    PURPOSE: Retinal microvasculopathy may reflect small vessel disease in the brain. Here we test the relationships between retinal vascular parameters and small vessel disease, the influence of cardiovascular risk factors on these relationships, and their common genetic background in a monozygotic twin cohort. METHODS: We selected 134 cognitively healthy individuals (67 monozygotic twin pairs) aged ‡60 years from the Netherlands Twin Register for the EMIF-AD PreclinAD study. We measured seven retinal vascular parameters averaged over both eyes using fundus images analyzed with Singapore I Vessel Assessment. Small vessel disease was assessed on MRI by a volumetric measurement of periventricular and deep white matter hyperintensities. We calculated associations between RVPs and WMH, estimated intratwin pair correlations, and performed twin-specific analyses on relationships of interest. RESULTS: Deep white matter hyperintensities volume was positively associated with retinal tortuosity in veins (P ¼ 0.004) and fractal dimension in arteries (P ¼ 0.001) and veins (P ¼ 0.032), periventricular white matter hyperintensities volume was positively associated with retinal venous width (P ¼ 0.028). Intratwin pair correlations were moderate to high for all small vessel disease/retinal vascular parameter variables (r ¼ 0.49–0.87, P < 0.001). Crosstwin cross-trait analyses showed that retinal venous tortuosity of twin 1 could predict deep white matter hyperintensities volume of the co-twin (r ¼ 0.23, P ¼ 0.030). Within twin-pair differences for retinal venous tortuosity were associated with within twin-pair differences in deep white matter hyperintensities volume (r ¼ 0.39, P ¼ 0.001). CONCLUSIONS: Retinal arterial fractal dimension and venous tortuosity have associations with deep white matter hyperintensities volume. Twin-specific analyses suggest that retinal venous tortuosity and deep white matter hyperintensities volume have a common etiology driven by both shared genetic factors and unique environmental factors, supporting the robustness of this relationship

    The Mitochondrial Ca(2+) Uniporter: Structure, Function, and Pharmacology.

    Get PDF
    Mitochondrial Ca(2+) uptake is crucial for an array of cellular functions while an imbalance can elicit cell death. In this chapter, we briefly reviewed the various modes of mitochondrial Ca(2+) uptake and our current understanding of mitochondrial Ca(2+) homeostasis in regards to cell physiology and pathophysiology. Further, this chapter focuses on the molecular identities, intracellular regulators as well as the pharmacology of mitochondrial Ca(2+) uniporter complex

    The stellar and sub-stellar IMF of simple and composite populations

    Full text link
    The current knowledge on the stellar IMF is documented. It appears to become top-heavy when the star-formation rate density surpasses about 0.1Msun/(yr pc^3) on a pc scale and it may become increasingly bottom-heavy with increasing metallicity and in increasingly massive early-type galaxies. It declines quite steeply below about 0.07Msun with brown dwarfs (BDs) and very low mass stars having their own IMF. The most massive star of mass mmax formed in an embedded cluster with stellar mass Mecl correlates strongly with Mecl being a result of gravitation-driven but resource-limited growth and fragmentation induced starvation. There is no convincing evidence whatsoever that massive stars do form in isolation. Various methods of discretising a stellar population are introduced: optimal sampling leads to a mass distribution that perfectly represents the exact form of the desired IMF and the mmax-to-Mecl relation, while random sampling results in statistical variations of the shape of the IMF. The observed mmax-to-Mecl correlation and the small spread of IMF power-law indices together suggest that optimally sampling the IMF may be the more realistic description of star formation than random sampling from a universal IMF with a constant upper mass limit. Composite populations on galaxy scales, which are formed from many pc scale star formation events, need to be described by the integrated galactic IMF. This IGIMF varies systematically from top-light to top-heavy in dependence of galaxy type and star formation rate, with dramatic implications for theories of galaxy formation and evolution.Comment: 167 pages, 37 figures, 3 tables, published in Stellar Systems and Galactic Structure, Vol.5, Springer. This revised version is consistent with the published version and includes additional references and minor additions to the text as well as a recomputed Table 1. ISBN 978-90-481-8817-
    corecore