1,106 research outputs found

    Soil type influences crop mineral composition in Malawi

    Get PDF
    Food supply and composition data can be combined to estimate micronutrient intakes and deficiency risks among populations. These estimates can be improved by using local crop composition data that can capture environmental influences including soil type. This study aimed to provide spatially resolved crop composition data for Malawi, where information is currently limited. Six hundred and fifty-two plant samples, representing 97 edible food items, were sampled from N150 sites in Malawi between 2011 and 2013. Samples were analysed by ICP-MS for up to 58 elements, including the essential minerals calcium (Ca), copper (Cu), iron (Fe), magnesium (Mg), selenium (Se) and zinc (Zn). Maize grain Ca, Cu, Fe, Mg, Se and Zn concentrations were greater from plants grown on calcareous soils than those from the more widespread low-pH soils. Leafy vegetables from calcareous soils had elevated leaf Ca, Cu, Fe and Se concentrations, but lower Zn concentrations. Several foods were found to accumulate high levels of Se, including the leaves of Moringa, a crop not previously been reported in East African food composition data sets. New estimates of national dietary mineral supplies were obtained for non-calcareous and calcareous soils. High risks of Ca (100%), Se (100%) and Zn (57%) dietary deficiencies are likely on non-calcareous soils. Deficiency risks on calcareous soils are high for Ca (97%), but lower for Se (34%) and Zn (31%). Risks of Cu, Fe and Mg deficiencies appear to be low on the basis of dietary supply levels

    The state of One Health research across disciplines and sectors:a bibliometric analysis

    Get PDF
    There is a growing interest in One Health, reflected by the rising number of publications relating to One Health literature, but also through zoonotic disease outbreaks becoming more frequent, such as Ebola, Zika virus and COVID-19. This paper uses bibliometric analysis to explore the state of One Health in academic literature, to visualise the characteristics and trends within the field through a network analysis of citation patterns and bibliographic links. The analysis focuses on publication trends, co-citation network of scientific journals, co-citation network of authors, and co-occurrence of keywords. The bibliometric analysis showed an increasing interest for One Health in academic research. However, it revealed some thematic and disciplinary shortcomings, in particular with respect to the inclusion of environmental themes and social science insights pertaining to the implementation of One Health policies. The analysis indicated that there is a need for more applicable approaches to strengthen intersectoral collaboration and knowledge sharing. Silos between the disciplines of human medicine, veterinary medicine and environment still persist. Engaging researchers with different expertise and disciplinary backgrounds will facilitate a more comprehensive perspective where the human-animal-environment interface is not researched as separate entities but as a coherent whole. Further, journals dedicated to One Health or interdisciplinary research provide scholars the possibility to publish multifaceted research. These journals are uniquely positioned to bridge between fields, strengthen interdisciplinary research and create room for social science approaches alongside of medical and natural sciences. OHEJP PhD project: SUSTAI

    Biofilm formation on enteral feeding tubes by Cronobacter sakazakii, Salmonella serovars and other Enterobacteriaceae

    Get PDF
    WHO (2007) recommended that to reduce microbial risks, powdered infant formula should be reconstituted with water at temperatures >70 °C, and that such feeds should be used within 2 h of preparation. However, this recommendation does not consider the use of enteral feeding tubes which can be in place for more than 48 h and can be loci for bacterial attachment. This study determined the extent to which 29 strains of Cronobacter sakazakii, Salmonella serovars, other Enterobacteriaceae and Acinetobacter spp. can adhere and grow on enteral feeding tubes composed of polyvinyl chloride and polyurethane. The study also included silver-impregnated tubing which was expected to have antibacterial activity. Bacterial biofilm formation by members of the Enterobacteriaceae was ca. 105-106 cfu/cm after 24 h. Negligible biofilm was detected for Acinetobacter gensp. 13; ca. 10 cfu/cm, whereas Cr. sakazakii strain ATCC 12868 had the highest biofilm cell density of 107 cfu/cm. Biofilm formation did not correlate with capsule production, and was not inhibited on silver-impregnated tubing. Bacteria grew in the tube lumen to cell densities of 107 cfu/ml within 8 h, and 109 cfu/ml within 24 h. It is plausible that in vivo the biofilm will both inoculate subsequent routine feeds and as the biofilm ages, clumps of cells will be shed which may survive passage through the neonate's stomach. Therefore biofilm formation on enteral feeding tubes constitutes a risk factor for susceptible neonates

    Chemical simulation of greywater

    Get PDF
    Sustainable water resources management attracts considerable attention in today’s world. Recycling and reuse of both wastewater and greywater are becoming more attractive. The strategy is to protect ecosystem services by balancing the withdrawal of water and the disposal of wastewater. In the present study, a timely and novel synthetic greywater composition has been proposed with respect of the composition of heavy metals, nutrients and organic matter. The change in water quality of the synthetic greywater due to increasing storage time was monitored to evaluate the stability of the proposed chemical formula. The new greywater is prepared artificially using analytical grade chemicals to simulate either low (LC) or high (HC) pollutant concentrations. The characteristics of the synthetic greywater were tested (just before starting the experiment, after two days and a week of storage under real weather conditions) and compared to those reported for real greywater. Test results for both synthetic greywater types showed great similarities with the physiochemical properties of published findings concerning real greywater. Furthermore, the synthetic greywater is relatively stable in terms of its characteristics for different storage periods. However, there was a significant (p<0.05) reduction in 5-day biochemical oxygen demand (BOD5) for both low (LC) and high (HC) concentrations of greywater after two days of storage with reductions of 62% and 55%, respectively. A significant (p<0.05) change was also noted for the reduction (70%) of nitrate‒nitrogen (NO3‒N) concerning HC greywater after seven days of storage

    Global mapping of highly pathogenic avian influenza H5N1 and H5Nx clade 2.3.4.4 viruses with spatial cross-validation.

    Get PDF
    Global disease suitability models are essential tools to inform surveillance systems and enable early detection. We present the first global suitability model of highly pathogenic avian influenza (HPAI) H5N1 and demonstrate that reliable predictions can be obtained at global scale. Best predictions are obtained using spatial predictor variables describing host distributions, rather than land use or eco-climatic spatial predictor variables, with a strong association with domestic duck and extensively raised chicken densities. Our results also support a more systematic use of spatial cross-validation in large-scale disease suitability modelling compared to standard random cross-validation that can lead to unreliable measure of extrapolation accuracy. A global suitability model of the H5 clade 2.3.4.4 viruses, a group of viruses that recently spread extensively in Asia and the US, shows in comparison a lower spatial extrapolation capacity than the HPAI H5N1 models, with a stronger association with intensively raised chicken densities and anthropogenic factors

    The emergence of international food safety standards and guidelines: understanding the current landscape through a historical approach

    Get PDF
    Following the Second World War, the Food and Agriculture Organization (FAO) and the World Health Organization (WHO) teamed up to construct an International Codex Alimentarius (or 'food code') which emerged in 1963. The Codex Committee on Food Hygiene (CCFH) was charged with the task of developing microbial hygiene standards, although it found itself embroiled in debate with the WHO over the nature these standards should take. The WHO was increasingly relying upon the input of biometricians and especially the International Commission on Microbial Specifications for Foods (ICMSF) which had developed statistical sampling plans for determining the microbial counts in the final end products. The CCFH, however, was initially more focused on a qualitative approach which looked at the entire food production system and developed codes of practice as well as more descriptive end-product specifications which the WHO argued were 'not scientifically correct'. Drawing upon historical archival material (correspondence and reports) from the WHO and FAO, this article examines this debate over microbial hygiene standards and suggests that there are many lessons from history which could shed light upon current debates and efforts in international food safety management systems and approaches

    The Double Burden of Malnutrition: A Systematic Review of Operational Definitions

    Get PDF
    Background Despite increasing research on the double burden of malnutrition (DBM; i.e., coexisting over- and undernutrition), there is no global consensus on DBM definitions. Objectives To identify published operational DBM definitions, measure their frequency of use, and discuss implications for future assessment. Methods Following a structured search of peer-reviewed articles with terms describing “overnutrition” [e.g., overweight/obesity (OW/OB)] and “undernutrition” (e.g., stunting, micronutrient deficiency), we screened 1920 abstracts, reviewed 500 full texts, and extracted 623 operational definitions from 239 eligible articles. Results We organized three identified DBM dimensions (level of assessment, target population, and forms of malnutrition) into a framework for building operational DBM definitions. Frequently occurring definitions included coexisting: 1) OW/OB and thinness, wasting, or underweight (n = 289 occurrences); 2) OW/OB and stunting (n = 161); 3) OW/OB and anemia (n = 74); and 4) OW/OB and micronutrient deficiency (n = 73). Conclusions Existing DBM definitions vary widely. Putting structure to possible definitions may facilitate selection of fit-for-purpose indicators to meet public health priorities

    FOOD, FOOD SECURITY AND UN REFORM

    Get PDF
    SUMMARY The article addresses the question of UN reform from the perspective of food security. It offers a balance sheet of UN strengths and weaknesses, praising the UN role in advocacy, technical coordination and resource mobilization, but identifying serious politico?bureaucratic problems, and new challenges to the UN mandate caused by the coexistence of hunger and conflict. In understanding why the weaknesses occur, there are useful connections to be made in the debates on public administration, good government and the sociology of international politics, as well as those more directly on UN reform. These lead the article to identify four general principles for UN reform in the food security area, and to explore two options for change, one to improve the status quo and one to introduce more radical change. The latter is preferred: the UN mandate needs review, particularly in the area of conflict; there are too many agencies; and there are too many independent budgets. The article argues for a focal point in the UN system for policy determination and resource allocation for food security

    Refinement of arsenic attributable health risks in rural Pakistan using population specific dietary intake values

    Get PDF
    Background: Previous risk assessment studies have often utilised generic consumption or intake values when evaluating ingestion exposure pathways. If these values do not accurately reflect the country or scenario in question, the resulting risk assessment will not provide a meaningful representation of cancer risks in that particular country/scenario. Objectives: This study sought to determine water and food intake parameters for one region in South Asia, rural Pakistan, and assess the role population specific intake parameters play in cancer risk assessment. Methods: A questionnaire was developed to collect data on sociodemographic features and 24-hour water and food consumption patterns from a rural community. The impact of dietary differences on cancer susceptibility linked to arsenic exposure was evaluated by calculating cancer risks using the data collected in the current study against standard water and food intake levels for the USA, Europe and Asia. A probabilistic cancer risk was performed for each set of intake values of this study. Results: Average daily total water intake based on drinking direct plain water and indirect water from food and beverages was found to be 3.5 L day-1 (95% CI: 3.38, 3.57) exceeding the US Environmental Protection Agency’s default (2.5 L day-1) and World Health Organization’s recommended intake value (2 L day-1). Average daily rice intake (469 g day-1) was found to be lower than in India and Bangladesh whereas wheat intake (402 g day−1) was higher than intake reported for USA, Europe and Asian sub-regions. Consequently, arsenic-associated cumulative cancer risks determined for daily water intake was found to be 17 in children of 3-6 years (95% CI: 0.0014, 0.0017), 14 in children of age 6-16 years (95% CI: 0.001, 0.0011) and 6 in adults of 16-67 years (95% CI: 0.0006, 0.0006) in a population size of 10000. This is higher than the risks estimated using the US Environmental Protection Agency and World Health Organization’s default recommended water intake levels. Rice intake data showed early life cumulative cancer risks of 15 in 10000 for children of 3-6 years (95% CI: 0.0012, 0.0015), 14 in children of 6-16 years (95% CI: 0.0011, 0.0014) and later life risk of 8 in adults (95% CI: 0.0008, 0.0008) in a population of 10000. This is lower than cancer risks in countries with higher rice intake and elevated arsenic levels (Bangladesh and India). Cumulative cancer risk from arsenic exposure showed the relative risk contribution from total water to be51%, from rice to be44% and wheat intake 5%. Conclusions: The study demonstrates the need to use population specific dietary information for risk assessment and risk management studies. Probabilistic risk assessment concluded the importance of dietary intake in estimating cancer risk, along with arsenic concentrations in water or food and age of exposed rural population
    corecore