10 research outputs found

    The Battle for a Sustainable Food Supply

    No full text
    Since the time that Homo sapiens took up farming, a battle has been waged against pests and diseases which can cause significant losses in crop yield and threaten a sustainable food supply. Initially, early control techniques included religious practices or folk magic, hand removal of weeds and insects, and “chemical” techniques such as smokes, easily available minerals, oils and plant extracts known to have pesticidal activity. But it was not until the early twentieth century that real progress was made when a large number of compounds became available for testing as pesticides due to the upsurge in organic chemistry. The period after the 1940s saw the introduction of important families of chemicals, such as the phenoxy acid herbicides, the organochlorine insecticides and the dithiocarbamate fungicides. The introduction of new pesticides led to significant yield increases, but concern arose over their possible negative effects on human health and the environment. In time, resistance started to occur, making these pesticides less effective. This led agrochemical companies putting in place research looking for new modes of action and giving less toxic and more environmentally friendly products. These research programmes gave rise to new pesticide families, such as the sulfonylurea herbicides, the strobilurin fungicides and the neonicotinoid insecticide classes

    The Pre-sedation Assessment and Implications on Management

    No full text

    The roles of melatonin and light in the pathophysiology and treatment of circadian rhythm sleep disorders

    No full text

    Calcium oxalate films on works of art: A review

    No full text

    Notes for genera – Ascomycota

    No full text
    Knowledge of the relationships and thus the classification of fungi, has developed rapidly with increasingly widespread use of molecular techniques, over the past 10--15 years, and continues to accelerate. Several genera have been found to be polyphyletic, and their generic concepts have subsequently been emended. New names have thus been introduced for species which are phylogenetically distinct from the type species of particular genera. The ending of the separate naming of morphs of the same species in 2011, has also caused changes in fungal generic names. In order to facilitate access to all important changes, it was desirable to compile these in a single document. The present article provides a list of generic names of Ascomycota (approximately 6500 accepted names published to the end of 2016), including those which are lichen-forming. Notes and summaries of the changes since the last edition of `Ainsworth Bisby's Dictionary of the Fungi' in 2008 are provided. The notes include the number of accepted species, classification, type species (with location of the type material), culture availability, life-styles, distribution, and selected publications that have appeared since 2008. This work is intended to provide the foundation for updating the ascomycete component of the ``Without prejudice list of generic names of Fungi'' published in 2013, which will be developed into a list of protected generic names. This will be subjected to the XIXth International Botanical Congress in Shenzhen in July 2017 agreeing to a modification in the rules relating to protected lists, and scrutiny by procedures determined by the Nomenclature Committee for Fungi (NCF). The previously invalidly published generic names Barriopsis, Collophora (as Collophorina), Cryomyces, Dematiopleospora, Heterospora (as Heterosporicola), Lithophila, Palmomyces (as Palmaria) and Saxomyces are validated, as are two previously invalid family names, Bartaliniaceae and Wiesneriomycetaceae. Four species of Lalaria, which were invalidly published are transferred to Taphrina and validated as new combinations. Catenomycopsis Tibell Constant. is reduced under Chaenothecopsis Vain., while Dichomera Cooke is reduced under Botryosphaeria Ces. De Not. (Art. 59)
    corecore