38 research outputs found

    Transcriptome profiling of rabbit parthenogenetic blastocysts developed under in vivo conditions

    Get PDF
    Parthenogenetic embryos are one attractive alternative as a source of embryonic stem cells, although many aspects related to the biology of parthenogenetic embryos and parthenogenetically derived cell lines still need to be elucidated. The present work was conducted to investigate the gene expression profile of rabbit parthenote embryos cultured under in vivo conditions using microarray analysis. Transcriptomic profiles indicate 2541 differentially expressed genes between parthenotes and normal in vivo fertilised blastocysts, of which 76 genes were upregulated and 16 genes downregulated in in vivo cultured parthenote blastocyst, using 3 fold-changes as a cut-off. While differentially upregulated expressed genes are related to transport and protein metabolic process, downregulated expressed genes are related to DNA and RNA binding. Using microarray data, 6 imprinted genes were identified as conserved among rabbits, humans and mice: GRB10, ATP10A, ZNF215, NDN, IMPACT and SFMBT2. We also found that 26 putative genes have at least one member of that gene family imprinted in other species. These data strengthen the view that a large fraction of genes is differentially expressed between parthenogenetic and normal embryos cultured under the same conditions and offer a new approach to the identification of imprinted genes in rabbit. © 2012 Naturil-Alfonso et al.This work was supported by Generalitat Valenciana research programme (Prometeo 2009/125). Carmen Naturil was supported by Generalitat Valenciana research programme (Prometeo 2009/125). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Naturil Alfonso, C.; Saenz De Juano Ribes, MDLD.; Peñaranda, D.; Vicente Antón, JS.; Marco Jiménez, F. (2012). Transcriptome profiling of rabbit parthenogenetic blastocysts developed under in vivo conditions. PLoS ONE. 7(12):1-11. https://doi.org/10.1371/journal.pone.0051271S111712Harness, J. V., Turovets, N. A., Seiler, M. J., Nistor, G., Altun, G., Agapova, L. S., … Keirstead, H. S. (2011). Equivalence of Conventionally-Derived and Parthenote-Derived Human Embryonic Stem Cells. PLoS ONE, 6(1), e14499. doi:10.1371/journal.pone.0014499Lu, Z., Zhu, W., Yu, Y., Jin, D., Guan, Y., Yao, R., … Zhou, Q. (2010). Derivation and long-term culture of human parthenogenetic embryonic stem cells using human foreskin feeders. Journal of Assisted Reproduction and Genetics, 27(6), 285-291. doi:10.1007/s10815-010-9408-5Koh, C. J., Delo, D. M., Lee, J. W., Siddiqui, M. M., Lanza, R. P., Soker, S., … Atala, A. (2009). Parthenogenesis-derived multipotent stem cells adapted for tissue engineering applications. Methods, 47(2), 90-97. doi:10.1016/j.ymeth.2008.08.002Vrana, K. E., Hipp, J. D., Goss, A. M., McCool, B. A., Riddle, D. R., Walker, S. J., … Cibelli, J. B. (2003). Nonhuman primate parthenogenetic stem cells. Proceedings of the National Academy of Sciences, 100(Supplement 1), 11911-11916. doi:10.1073/pnas.2034195100Chen, Z., Liu, Z., Huang, J., Amano, T., Li, C., Cao, S., … Liu, L. (2009). Birth of Parthenote Mice Directly from Parthenogenetic Embryonic Stem Cells. Stem Cells, 27(9), 2136-2145. doi:10.1002/stem.158Sritanaudomchai, H., Ma, H., Clepper, L., Gokhale, S., Bogan, R., Hennebold, J., … Mitalipov, S. (2010). Discovery of a novel imprinted gene by transcriptional analysis of parthenogenetic embryonic stem cells. Human Reproduction, 25(8), 1927-1941. doi:10.1093/humrep/deq144Fang, Z. F., Gai, H., Huang, Y. Z., Li, S. G., Chen, X. J., Shi, J. J., … Sheng, H. Z. (2006). Rabbit embryonic stem cell lines derived from fertilized, parthenogenetic or somatic cell nuclear transfer embryos. Experimental Cell Research, 312(18), 3669-3682. doi:10.1016/j.yexcr.2006.08.013Wang, S., Tang, X., Niu, Y., Chen, H., Li, B., Li, T., … Ji, W. (2007). Generation and Characterization of Rabbit Embryonic Stem Cells. Stem Cells, 25(2), 481-489. doi:10.1634/stemcells.2006-0226Piedrahita, J. A., Anderson, G. B., & BonDurant, R. H. (1990). On the isolation of embryonic stem cells: Comparative behavior of murine, porcine and ovine embryos. Theriogenology, 34(5), 879-901. doi:10.1016/0093-691x(90)90559-cNaturil-Alfonso, C., Saenz-de-Juano, M. D., Peñaranda, D. S., Vicente, J. S., & Marco-Jiménez, F. (2011). Parthenogenic blastocysts cultured under in vivo conditions exhibit proliferation and differentiation expression genes similar to those of normal embryos. Animal Reproduction Science, 127(3-4), 222-228. doi:10.1016/j.anireprosci.2011.08.005Besenfelder, U., Strouhal, C., & Brem, G. (1998). A Method for Endoscopic Embryo Collection and Transfer in the Rabbit. Journal of Veterinary Medicine Series A, 45(1-10), 577-579. doi:10.1111/j.1439-0442.1998.tb00861.xMehaisen, G. M. K., Viudes-de-Castro, M. P., Vicente, J. S., & Lavara, R. (2006). In vitro and in vivo viability of vitrified and non-vitrified embryos derived from eCG and FSH treatment in rabbit does. Theriogenology, 65(7), 1279-1291. doi:10.1016/j.theriogenology.2005.08.007Bilodeau-Goeseels, S., & Schultz, G. A. (1997). Changes in Ribosomal Ribonucleic Acid Content Within in Vitro-produced Bovine Embryos1. Biology of Reproduction, 56(5), 1323-1329. doi:10.1095/biolreprod56.5.1323Conesa, A., Gotz, S., Garcia-Gomez, J. M., Terol, J., Talon, M., & Robles, M. (2005). Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics, 21(18), 3674-3676. doi:10.1093/bioinformatics/bti610Edgar, R. (2002). Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Research, 30(1), 207-210. doi:10.1093/nar/30.1.207Weltzien, F.-A., Pasqualini, C., Vernier, P., & Dufour, S. (2005). A quantitative real-time RT-PCR assay for European eel tyrosine hydroxylase. General and Comparative Endocrinology, 142(1-2), 134-142. doi:10.1016/j.ygcen.2004.12.019Llobat, L., Marco-Jiménez, F., Peñaranda, D., Saenz-de-Juano, M., & Vicente, J. (2011). Effect of Embryonic Genotype on Reference Gene Selection for RT-qPCR Normalization. Reproduction in Domestic Animals, 47(4), 629-634. doi:10.1111/j.1439-0531.2011.01934.xLiu, N., Enkemann, S. A., Liang, P., Hersmus, R., Zanazzi, C., Huang, J., … Liu, L. (2010). Genome-wide Gene Expression Profiling Reveals Aberrant MAPK and Wnt Signaling Pathways Associated with Early Parthenogenesis. Journal of Molecular Cell Biology, 2(6), 333-344. doi:10.1093/jmcb/mjq029Abdoon, A. S., Ghanem, N., Kandil, O. M., Gad, A., Schellander, K., & Tesfaye, D. (2012). cDNA microarray analysis of gene expression in parthenotes and in vitro produced buffalo embryos. Theriogenology, 77(6), 1240-1251. doi:10.1016/j.theriogenology.2011.11.004Labrecque, R., & Sirard, M.-A. (2011). Gene expression analysis of bovine blastocysts produced by parthenogenic activation or fertilisation. Reproduction, Fertility and Development, 23(4), 591. doi:10.1071/rd10243Rizos, D., Clemente, M., Bermejo-Alvarez, P., de La Fuente, J., Lonergan, P., & Gutiérrez-Adán, A. (2008). Consequences ofIn VitroCulture Conditions on Embryo Development and Quality. Reproduction in Domestic Animals, 43, 44-50. doi:10.1111/j.1439-0531.2008.01230.xLonergan, P., Rizos, D., Kanka, J., Nemcova, L., Mbaye, A., Kingston, M., … Boland, M. (2003). Temporal sensitivity of bovine embryos to culture environment after fertilization and the implications for blastocyst quality. Reproduction, 337-346. doi:10.1530/rep.0.1260337Memili, E., & First, N. L. (2000). Zygotic and embryonic gene expression in cow: a review of timing and mechanisms of early gene expression as compared with other species. Zygote, 8(1), 87-96. doi:10.1017/s0967199400000861Latham, K. E. (2001). Embryonic genome activation. Frontiers in Bioscience, 6(3), d748-759. doi:10.2741/a639Niemann, H., & Wrenzycki, C. (2000). Alterations of expression of developmentally important genes in preimplantation bovine embryos by in vitro culture conditions: Implications for subsequent development. Theriogenology, 53(1), 21-34. doi:10.1016/s0093-691x(99)00237-xCorcoran, D., Fair, T., Park, S., Rizos, D., Patel, O. V., Smith, G. W., … Lonergan, P. (2006). Suppressed expression of genes involved in transcription and translation in in vitro compared with in vivo cultured bovine embryos. Reproduction, 131(4), 651-660. doi:10.1530/rep.1.01015Morison, I. M., Ramsay, J. P., & Spencer, H. G. (2005). A census of mammalian imprinting. Trends in Genetics, 21(8), 457-465. doi:10.1016/j.tig.2005.06.008Bischoff, S. R., Tsai, S., Hardison, N., Motsinger-Reif, A. A., Freking, B. A., Nonneman, D., … Piedrahita, J. A. (2009). Characterization of Conserved and Nonconserved Imprinted Genes in Swine1. Biology of Reproduction, 81(5), 906-920. doi:10.1095/biolreprod.109.078139Cruz-Correa, M., Zhao, R., Oveido, M., Bernabe, R. D., Lacourt, M., Cardona, A., … Giardiello, F. M. (2009). Temporal stability and age-related prevalence of loss of imprinting of the insulin-like growth factor-2 gene. Epigenetics, 4(2), 114-118. doi:10.4161/epi.4.2.7954Park, C.-H., Uh, K.-J., Mulligan, B. P., Jeung, E.-B., Hyun, S.-H., Shin, T., … Lee, C.-K. (2011). Analysis of Imprinted Gene Expression in Normal Fertilized and Uniparental Preimplantation Porcine Embryos. PLoS ONE, 6(7), e22216. doi:10.1371/journal.pone.0022216Thurston, A., Taylor, J., Gardner, J., Sinclair, K. D., & Young, L. E. (2007). Monoallelic expression of nine imprinted genes in the sheep embryo occurs after the blastocyst stage. Reproduction, 135(1), 29-40. doi:10.1530/rep-07-0211Li, Y., & Sasaki, H. (2011). Genomic imprinting in mammals: its life cycle, molecular mechanisms and reprogramming. Cell Research, 21(3), 466-473. doi:10.1038/cr.2011.15Mamo, S., Gal, A., Polgar, Z., & Dinnyes, A. (2008). Expression profiles of the pluripotency marker gene POU5F1 and validation of reference genes in rabbit oocytes and preimplantation stage embryos. BMC Molecular Biology, 9(1), 67. doi:10.1186/1471-2199-9-67Navarrete Santos, A., Tonack, S., Kirstein, M., Pantaleon, M., Kaye, P., & Fischer, B. (2004). Insulin acts via mitogen-activated protein kinase phosphorylation in rabbit blastocysts. Reproduction, 128(5), 517-526. doi:10.1530/rep.1.0020

    Allomorphy as a mechanism of post-translational control of enzyme activity

    Get PDF
    Enzyme regulation is vital for metabolic adaptability in living systems. Fine control of enzyme activity is often delivered through post-translational mechanisms, such as allostery or allokairy. β-phosphoglucomutase (βPGM) from Lactococcus lactis is a phosphoryl transfer enzyme required for complete catabolism of trehalose and maltose, through the isomerisation of β-glucose 1-phosphate to glucose 6-phosphate via β-glucose 1,6-bisphosphate. Surprisingly for a gatekeeper of glycolysis, no fine control mechanism of βPGM has yet been reported. Herein, we describe allomorphy, a post-translational control mechanism of enzyme activity. In βPGM, isomerisation of the K145-P146 peptide bond results in the population of two conformers that have different activities owing to repositioning of the K145 sidechain. In vivo phosphorylating agents, such as fructose 1,6-bisphosphate, generate phosphorylated forms of both conformers, leading to a lag phase in activity until the more active phosphorylated conformer dominates. In contrast, the reaction intermediate β-glucose 1,6-bisphosphate, whose concentration depends on the β-glucose 1-phosphate concentration, couples the conformational switch and the phosphorylation step, resulting in the rapid generation of the more active phosphorylated conformer. In enabling different behaviours for different allomorphic activators, allomorphy allows an organism to maximise its responsiveness to environmental changes while minimising the diversion of valuable metabolites

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    CMS Data Processing Workflows during an Extended Cosmic Ray Run

    Get PDF
    Peer reviewe

    Aligning the CMS Muon Chambers with the Muon Alignment System during an Extended Cosmic Ray Run

    Get PDF
    Peer reviewe

    Identification and Filtering of Uncharacteristic Noise in the CMS Hadron Calorimeter

    Get PDF
    VertaisarvioitupeerReviewe

    Performance of CMS Hadron Calorimeter Timing and Synchronization using Test Beam, Cosmic Ray, and LHC Beam Data

    Get PDF
    Peer reviewe

    Performance of the CMS drift tube chambers with cosmic rays

    Get PDF
    This is the Pre-print version of the Article. The official published version of the paper can be accessed from the link below - Copyright @ 2010 IOPStudies of the performance of the CMS drift tube barrel muon system are described, with results based on data collected during the CMS Cosmic Run at Four Tesla. For most of these data, the solenoidal magnet was operated with a central field of 3.8 T. The analysis of data from 246 out of a total of 250 chambers indicates a very good muon reconstruction capability, with a coordinate resolution for a single hit of about 260 Îźm, and a nearly 100% efficiency for the drift tube cells. The resolution of the track direction measured in the bending plane is about 1.8 mrad, and the efficiency to reconstruct a segment in a single chamber is higher than 99%. The CMS simulation of cosmic rays reproduces well the performance of the barrel muon detector.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)

    Performance of the CMS drift tube chambers with cosmic rays

    Get PDF
    This is the Pre-print version of the Article. The official published version of the paper can be accessed from the link below - Copyright @ 2010 IOPStudies of the performance of the CMS drift tube barrel muon system are described, with results based on data collected during the CMS Cosmic Run at Four Tesla. For most of these data, the solenoidal magnet was operated with a central field of 3.8 T. The analysis of data from 246 out of a total of 250 chambers indicates a very good muon reconstruction capability, with a coordinate resolution for a single hit of about 260 Îźm, and a nearly 100% efficiency for the drift tube cells. The resolution of the track direction measured in the bending plane is about 1.8 mrad, and the efficiency to reconstruct a segment in a single chamber is higher than 99%. The CMS simulation of cosmic rays reproduces well the performance of the barrel muon detector.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)

    Performance of CMS muon reconstruction in cosmic-ray events

    Get PDF
    This is the Pre-print version of the Article. The official published version of the Paper can be accessed from the link below - Copyright @ 2010 IOPThe performance of muon reconstruction in CMS is evaluated using a large data sample of cosmic-ray muons recorded in 2008. Efficiencies of various high-level trigger, identification, and reconstruction algorithms have been measured for a broad range of muon momenta, and were found to be in good agreement with expectations from Monte Carlo simulation. The relative momentum resolution for muons crossing the barrel part of the detector is better than 1% at 10 GeV/c and is about 8% at 500 GeV/c, the latter being only a factor of two worse than expected with ideal alignment conditions. Muon charge misassignment ranges from less than 0.01% at 10 GeV/c to about 1% at 500 GeV/c.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)
    corecore