369 research outputs found
Frequency Shifts and Linewidth Changes of Infrared-Active Phonons in Double-Layered High-Temperature Superconductors
We calculate frequency shifts and changes in linewidths of infrared-active
phonons within a shell model for the bare phononic system coupled to an
electronic double-layer structure with inter-layer charge transfer. The
theoretical concept is applied to YBaCuO yielding a good description of
experimental results in the normal state as well as at the transition to the
superconducting state.Comment: 8 pages, LaTex, SISSA-CM-93-00
The four-populations model: a new classification scheme for pre-planetesimal collisions
Within the collision growth scenario for planetesimal formation, the growth
step from centimetre sized pre-planetesimals to kilometre sized planetesimals
is still unclear. The formation of larger objects from the highly porous
pre-planetesimals may be halted by a combination of fragmentation in disruptive
collisions and mutual rebound with compaction. However, the right amount of
fragmentation is necessary to explain the observed dust features in late T
Tauri discs. Therefore, detailed data on the outcome of pre-planetesimal
collisions is required and has to be presented in a suitable and precise
format. We propose and apply a new classification scheme for pre-planetesimal
collisions based on the quantitative aspects of four fragment populations: the
largest and second largest fragment, a power-law population, and a
sub-resolution population. For the simulations of pre-planetesimal collisions,
we adopt the SPH numerical scheme with extensions for the simulation of porous
solid bodies. By means of laboratory benchmark experiments, this model was
previously calibrated and tested for the correct simulation of the compaction,
bouncing, and fragmentation behaviour of macroscopic highly porous silica dust
aggregates. It is shown that previous attempts to map collision data were much
too oriented on qualitatively categorising into sticking, bouncing, and
fragmentation events. We show that the four-populations model encompasses all
previous categorisations and in addition allows for transitions. This is
because it is based on quantitative characteristic attributes of each
population such as the mass, kinetic energy, and filling factor. As a
demonstration of the applicability and the power of the four-populations model,
we utilise it to present the results of a study on the influence of collision
velocity in head-on collisions of intermediate porosity aggregates.Comment: 14 pages, 11 figures, 5 tables, to be published in Astronomy and
Astrophysic
Breaking through: The effects of a velocity distribution on barriers to dust growth
It is unknown how far dust growth can proceed by coagulation. Obstacles to
collisional growth are the fragmentation and bouncing barriers. However, in all
previous simulations of the dust-size evolution in protoplanetary disks, only
the mean collision velocity has been considered, neglecting that a small but
possibly important fraction of the collisions will occur at both much lower and
higher velocities. We study the effect of the probability distribution of
impact velocities on the collisional dust growth barriers. Assuming a
Maxwellian velocity distribution for colliding particles to determine the
fraction of sticking, bouncing, and fragmentation, we implement this in a
dust-size evolution code. We also calculate the probability of growing through
the barriers and the growth timescale in these regimes. We find that the
collisional growth barriers are not as sharp as previously thought. With the
existence of low-velocity collisions, a small fraction of the particles manage
to grow to masses orders of magnitude above the main population. A particle
velocity distribution softens the fragmentation barrier and removes the
bouncing barrier. It broadens the size distribution in a natural way, allowing
the largest particles to become the first seeds that initiate sweep-up growth
towards planetesimal sizes.Comment: 4 pages, 3 figures. Accepted for publication as a Letter in Astronomy
and Astrophysic
Compositional, structural and morphological modifications of N-rich Cu3N films induced by irradiation with Cu at 42 MeV
N-rich Cu3N films were irradiated with Cu at 42 MeV in the fluences range from 4 × 1011 to 1 × 1014 cm−2. The radiation-induced changes in the chemical composition, structural phases, surface morphology and optical properties have been characterized as a function of ion fluence, substrate temperature and angle of incidence of the incoming ion by means of ion-beam analysis (IBA), x-ray diffraction, atomic force microscopy, profilometry and Fourier transform infrared spectroscopy techniques. IBA methods reveal a very efficient sputtering of N whose yield (5 × 103 atom/ion) is almost independent of substrate temperature (RT-300 °C) but slightly depends on the incidence angle of the incoming ion. The Cu content remains essentially constant within the investigated fluence range. All data suggest an electronic mechanism to be responsible for the N depletion. The release of nitrogen and the formation of Cu2O and metallic Cu are discussed on the basis of existing models
Accelerated physical emulation of Bayesian inference in spiking neural networks
The massively parallel nature of biological information processing plays an
important role for its superiority to human-engineered computing devices. In
particular, it may hold the key to overcoming the von Neumann bottleneck that
limits contemporary computer architectures. Physical-model neuromorphic devices
seek to replicate not only this inherent parallelism, but also aspects of its
microscopic dynamics in analog circuits emulating neurons and synapses.
However, these machines require network models that are not only adept at
solving particular tasks, but that can also cope with the inherent
imperfections of analog substrates. We present a spiking network model that
performs Bayesian inference through sampling on the BrainScaleS neuromorphic
platform, where we use it for generative and discriminative computations on
visual data. By illustrating its functionality on this platform, we implicitly
demonstrate its robustness to various substrate-specific distortive effects, as
well as its accelerated capability for computation. These results showcase the
advantages of brain-inspired physical computation and provide important
building blocks for large-scale neuromorphic applications.Comment: This preprint has been published 2019 November 14. Please cite as:
Kungl A. F. et al. (2019) Accelerated Physical Emulation of Bayesian
Inference in Spiking Neural Networks. Front. Neurosci. 13:1201. doi:
10.3389/fnins.2019.0120
From hidden-order to antiferromagnetism: electronic structure changes in Fe-doped URuSi
In matter, any spontaneous symmetry breaking induces a phase transition
characterized by an order parameter, such as the magnetization vector in
ferromagnets, or a macroscopic many-electron wave-function in superconductors.
Phase transitions with unknown order parameter are rare but extremely
appealing, as they may lead to novel physics. An emblematic, and still
unsolved, example is the transition of the heavy fermion compound URuSi
(URS) into the so-called hidden-order (HO) phase when the temperature drops
below K. Here we show that the interaction between the heavy
fermion and the conduction band states near the Fermi level has a key role in
the emergence of the HO phase. Using angle resolved photoemission spectroscopy,
we find that while the Fermi surfaces of the HO and of a neighboring
antiferromagnetic (AFM) phase of well-defined order parameter have the same
topography, they differ in the size of some, but not all, of their electron
pockets. Such a non-rigid change of the electronic structure indicates that a
change in the interaction strength between states near the Fermi level is a
crucial ingredient for the HO-to-AFM phase transition.Comment: 23 pages, 14 figures, 1 ancillary movi
Planetesimal formation by sweep-up: How the bouncing barrier can be beneficial to growth
The formation of planetesimals is often accredited to collisional sticking of
dust grains. The exact process is unknown, as collisions between larger
aggregates tend to lead to fragmentation or bouncing rather than sticking.
Recent laboratory experiments have however made great progress in the
understanding and mapping of the complex physics involved in dust collisions.
We want to study the possibility of planetesimal formation using the results
from the latest laboratory experiments, particularly by including the
fragmentation with mass transfer effect, which might lead to growth even at
high impact velocities. We present a new experimentally and physically
motivated dust collision model capable of predicting the outcome of a collision
between two particles of arbitrary masses and velocities. It is used together
with a continuum dust-size evolution code that is both fast in terms of
execution time and able to resolve the dust well at all sizes, allowing for all
types of interactions to be studied without biases. We find that for the
general dust population, bouncing collisions prevent the growth above
millimeter-sizes. However, if a small number of cm-sized particles are
introduced, for example due to vertical mixing or radial drift, they can act as
a catalyst and start to sweep up the smaller particles. At a distance of 3 AU,
100-meter-sized bodies are formed on a timescale of 1 Myr. We conclude that
direct growth of planetesimals might be a possibility thanks to a combination
of the existence of a bouncing barrier and the fragmentation with mass transfer
effect. The bouncing barrier is here even beneficial, as it prevents the growth
of too many large particles that would otherwise only fragment among each
other, and creates a reservoir of small particles that can be swept up by
larger bodies. However, for this process to work, a few seeds of cm in size or
larger have to be introduced.Comment: 17 pages, 13 figures. Accepted for publication in Astronomy and
Astrophysic
Serum prolactin as a biomarker for the study of intracerebral dopamine effect in adult patients with phenylketonuria: a cross-sectional monocentric study
BACKGROUND: It has been previously postulated that high phenylalanine (Phe) might disturb intracerebral dopamine production, which is the main regulator of prolactin secretion in the pituitary gland. Previously, various associations between Phe and hyperprolactinemia were revealed in studies performed in phenylketonuria (PKU) children and adolescents. The aim of the present study was to clarify whether any relation between serum phenylalanine and prolactin levels can be found in adult PKU patients. PATIENTS AND METHODS: We conducted a cross-sectional, monocentric study including 158 adult patients (male n = 68, female n = 90) with PKU. All patients were diagnosed during newborn screening and were treated since birth. Serum Phe, tyrosine (Tyr), prolactin (PRL), and thyroid-stimulating hormone (TSH) levels were measured, and Phe/Tyr ratio was calculated. Males and females were analyzed separately because the serum prolactin level is gender-dependent. RESULTS: No significant correlations were found between serum phenylalanine, tyrosine, or the Phe/Tyr ratio and serum prolactin level either in the male or in the female group. CONCLUSIONS: In treated adult PKU patients, the serum prolactin level may not be significantly influenced by Phe or Tyr serum levels
Evidence for the formation of comet 67P/Churyumov-Gerasimenko through gravitational collapse of a bound clump of pebbles
The processes that led to the formation of the planetary bodies in the Solar System are still not fully understood. Using the results obtained with the comprehensive suite of instruments on-board ESA’s Rosetta mission, we present evidence that comet 67P/Churyumov-Gerasimenko likely formed through the gentle gravitational collapse of a bound clump of mm-sized dust aggregates (“pebbles”), intermixed with microscopic ice particles. This formation scenario leads to a cometary make-up that is simultaneously compatible with the global porosity, homogeneity, tensile strength, thermal inertia, vertical temperature profiles, sizes and porosities of emitted dust, and the steep increase in water-vapour production rate with decreasing heliocentric distance, measured by the instruments on-board the Rosetta spacecraft and the Philae lander. Our findings suggest that the pebbles observed to be abundant in protoplanetary discs around young stars provide the building material for comets and other minor bodies
- …