346 research outputs found
Evidence for a shared etiological mechanism of psychotic symptoms and obsessive-compulsive symptoms in patients with psychotic disorders and their siblings
The prevalence of obsessive-compulsive disorder in subjects with psychotic disorder is much higher than in the general population. The higher than chance co-occurrence has also been demonstrated at the level of subclinical expression of both phenotypes. Both extended phenotypes have been shown to cluster in families. However, little is known about the origins of their elevated co-occurrence. In the present study, evidence for a shared etiological mechanism was investigated in 3 samples with decreasing levels of familial psychosis liability: 987 patients, 973 of their unaffected siblings and 566 healthy controls. The association between the obsessive-compulsive phenotype and the psychosis phenotype c.q. psychosis liability was investigated. First, the association was assessed between (subclinical) obsessive-compulsive symptoms and psychosis liability. Second, in a cross-sib cross-trait analysis, it was examined whether (subclinical) obsessive-compulsive symptoms in the patient were associated with (subclinical) psychotic symptoms in the related unaffected sibling. Evidence was found for both associations, which is compatible with a partially shared etiological pathway underlying obsessive-compulsive and psychotic disorder. This is the first study that used a cross-sib cross-trait design in patients and unaffected siblings, thus circumventing confounding by disease-related factors present in clinical samples
The COMPASS Experiment at CERN
The COMPASS experiment makes use of the CERN SPS high-intensitymuon and
hadron beams for the investigation of the nucleon spin structure and the
spectroscopy of hadrons. One or more outgoing particles are detected in
coincidence with the incoming muon or hadron. A large polarized target inside a
superconducting solenoid is used for the measurements with the muon beam.
Outgoing particles are detected by a two-stage, large angle and large momentum
range spectrometer. The setup is built using several types of tracking
detectors, according to the expected incident rate, required space resolution
and the solid angle to be covered. Particle identification is achieved using a
RICH counter and both hadron and electromagnetic calorimeters. The setup has
been successfully operated from 2002 onwards using a muon beam. Data with a
hadron beam were also collected in 2004. This article describes the main
features and performances of the spectrometer in 2004; a short summary of the
2006 upgrade is also given.Comment: 84 papes, 74 figure
X-shooter, the new wide band intermediate resolution spectrograph at the ESO Very Large Telescope
X-shooter is the first 2nd generation instrument of the ESO Very Large
Telescope(VLT). It is a very efficient, single-target, intermediate-resolution
spectrograph that was installed at the Cassegrain focus of UT2 in 2009. The
instrument covers, in a single exposure, the spectral range from 300 to 2500
nm. It is designed to maximize the sensitivity in this spectral range through
dichroic splitting in three arms with optimized optics, coatings, dispersive
elements and detectors. It operates at intermediate spectral resolution
(R~4,000 - 17,000, depending on wavelength and slit width) with fixed echelle
spectral format (prism cross-dispersers) in the three arms. It includes a
1.8"x4" Integral Field Unit as an alternative to the 11" long slits. A
dedicated data reduction package delivers fully calibrated two-dimensional and
extracted spectra over the full wavelength range. We describe the main
characteristics of the instrument and present its performance as measured
during commissioning, science verification and the first months of science
operations.Comment: accepted for publication in A&
Future axion searches with the International Axion Observatory (IAXO)
The International Axion Observatory (IAXO) is a new generation axion helioscope aiming at a sensitivity to the axion-photon coupling of ga\u3b3 3c few
7 10-12 GeV-1, i.e. 1-1.5 orders of magnitude beyond the one achieved by CAST, currently the most sensitive axion helioscope. The main elements of IAXO are an increased magnetic field volume together with extensive use of x-ray focusing optics and low background detectors, innovations already successfully tested in CAST. Additional physics cases of IAXO could include the detection of electron-coupled axions invoked to explain the white dwarf cooling, relic axions, and a large variety of more generic axion-like particles (ALPs) and other novel excitations at the low-energy frontier of elementary particle physics
Advanced Virgo Plus: Future Perspectives
While completing the commissioning phase to prepare the Virgo interferometer for the next joint Observation Run (O4), the Virgo collaboration is also finalizing the design of the next upgrades to the detector to be employed in the following Observation Run (O5). The major upgrade will concern decreasing the thermal noise limit, which will imply using very large test masses and increased laser beam size. But this will not be the only upgrade to be implemented in the break between the O4 and O5 observation runs to increase the Virgo detector strain sensitivity. The paper will cover the challenges linked to this upgrade and implications on the detector's reach and observational potential, reflecting the talk given at 12th Cosmic Ray International Seminar - CRIS 2022 held in September 2022 in Napoli
The Advanced Virgo+ status
The gravitational wave detector Advanced Virgo+ is currently in the commissioning phase in view of the fourth Observing Run (O4). The major upgrades with respect to the Advanced Virgo configuration are the implementation of an additional recycling cavity, the Signal Recycling cavity (SRC), at the output of the interferometer to broaden the sensitivity band and the Frequency Dependent Squeezing (FDS) to reduce quantum noise at all frequencies. The main difference of the Advanced Virgo + detector with respect to the LIGO detectors is the presence of marginally stable recycling cavities, with respect to the stable recycling cavities present in the LIGO detectors, which increases the difficulties in controlling the interferometer in presence of defects (both thermal and cold defects). This work will focus on the interferometer commissioning, highlighting the control challenges to maintain the detector in the working point which maximizes the sensitivity and the duty cycle for scientific data taking
Frequency-Dependent Squeezed Vacuum Source for the Advanced Virgo Gravitational-Wave Detector
In this Letter, we present the design and performance of the frequency-dependent squeezed vacuum source that will be used for the broadband quantum noise reduction of the Advanced Virgo Plus gravitational-wave detector in the upcoming observation run. The frequency-dependent squeezed field is generated by a phase rotation of a frequency-independent squeezed state through a 285 m long, high-finesse, near-detuned optical resonator. With about 8.5 dB of generated squeezing, up to 5.6 dB of quantum noise suppression has been measured at high frequency while close to the filter cavity resonance frequency, the intracavity losses limit this value to about 2 dB. Frequency-dependent squeezing is produced with a rotation frequency stability of about 6 Hz rms, which is maintained over the long term. The achieved results fulfill the frequency dependent squeezed vacuum source requirements for Advanced Virgo Plus. With the current squeezing source, considering also the estimated squeezing degradation induced by the interferometer, we expect a reduction of the quantum shot noise and radiation pressure noise of up to 4.5 dB and 2 dB, respectively
Frequency-Dependent Squeezed Vacuum Source for the Advanced Virgo Gravitational-Wave Detector
In this Letter, we present the design and performance of the frequency-dependent squeezed vacuum source that will be used for the broadband quantum noise reduction of the Advanced Virgo Plus gravitational-wave detector in the upcoming observation run. The frequency-dependent squeezed field is generated by a phase rotation of a frequency-independent squeezed state through a 285 m long, high-finesse, near-detuned optical resonator. With about 8.5 dB of generated squeezing, up to 5.6 dB of quantum noise suppression has been measured at high frequency while close to the filter cavity resonance frequency, the intracavity losses limit this value to about 2 dB. Frequency-dependent squeezing is produced with a rotation frequency stability of about 6 Hz rms, which is maintained over the long term. The achieved results fulfill the frequency dependent squeezed vacuum source requirements for Advanced Virgo Plus. With the current squeezing source, considering also the estimated squeezing degradation induced by the interferometer, we expect a reduction of the quantum shot noise and radiation pressure noise of up to 4.5 dB and 2 dB, respectively
Virgo Detector Characterization and Data Quality during the O3 run
The Advanced Virgo detector has contributed with its data to the rapid growth
of the number of detected gravitational-wave signals in the past few years,
alongside the two LIGO instruments. First, during the last month of the
Observation Run 2 (O2) in August 2017 (with, most notably, the compact binary
mergers GW170814 and GW170817) and then during the full Observation Run 3 (O3):
an 11 months data taking period, between April 2019 and March 2020, that led to
the addition of about 80 events to the catalog of transient gravitational-wave
sources maintained by LIGO, Virgo and KAGRA. These discoveries and the manifold
exploitation of the detected waveforms require an accurate characterization of
the quality of the data, such as continuous study and monitoring of the
detector noise. These activities, collectively named {\em detector
characterization} or {\em DetChar}, span the whole workflow of the Virgo data,
from the instrument front-end to the final analysis. They are described in
details in the following article, with a focus on the associated tools, the
results achieved by the Virgo DetChar group during the O3 run and the main
prospects for future data-taking periods with an improved detector.Comment: 86 pages, 33 figures. This paper has been divided into two articles
which supercede it and have been posted to arXiv on October 2022. Please use
these new preprints as references: arXiv:2210.15634 (tools and methods) and
arXiv:2210.15633 (results from the O3 run
- …