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Abstract. The International Axion Observatory (IAXO) is a new generation axion helioscope
aiming at a sensitivity to the axion-photon coupling of gaγ & few×10−12 GeV−1, i.e. 1-1.5 orders
of magnitude beyond the one achieved by CAST, currently the most sensitive axion helioscope.
The main elements of IAXO are an increased magnetic field volume together with extensive use
of x-ray focusing optics and low background detectors, innovations already successfully tested in
CAST. Additional physics cases of IAXO could include the detection of electron-coupled axions
invoked to explain the white dwarf cooling, relic axions, and a large variety of more generic
axion-like particles (ALPs) and other novel excitations at the low-energy frontier of elementary
particle physics.

1. Introduction
The Peccei-Quinn (PQ) mechanism of dynamical symmetry restoration [1, 2] stands out as
the most compelling solution of the strong CP problem. Central to the PQ mechanism is the
axion [3, 4], the Nambu-Goldstone boson of a new spontaneously broken symmetry U(1)PQ. The
properties of axions allow them to be produced in the early universe as coherent field oscillations
and as such to provide all or part of the cold dark matter [5, 6].

It is still possible to find these “invisible axions” in realistic search experiments and in this way
test a fundamental aspect of QCD. The generic aγγ vertex allows for axion-photon conversion
in external electric or magnetic fields in analogy to the Primakoff effect for neutral pions. As
shown in 1983 by Pierre Sikivie, the smallness of the axion mass allows this conversion to take
place coherently over macroscopic distances, compensating for the smallness of the interaction
strength [7]. Especially promising is to use the Sun as a source for axions produced in its interior
by the Primakoff effect. Directing a strong dipole magnet toward the Sun allows one to search for
keV-range x-rays produced by axion-photon conversion, a process best visualized as a particle
oscillation phenomenon [8] in analogy to neutrino flavor oscillations. Three such helioscopes
have been built, in Brookhaven [9], Tokyo [10] and at CERN [11]. The CERN Axion Solar
Telescope (CAST) has just finished a 8-year long data taking period, having strongly improved
on previous experiments and even surpassed astrophysical limits in some range of parameters,
although axions have not been found.

We have shown [12] that large improvements in magnetic field volume, x-ray focusing optics
and detector backgrounds with respect to CAST are possible. Based on these improvements,
and on the experience gathered within CAST, we propose the International Axion Observatory
(IAXO), a new generation axion helioscope. IAXO could search for axions that are 1–1.5 orders
of magnitude more weakly interacting than those allowed by current CAST constraints. It
appears conceivable to surpass the SN 1987A constraint on the axion mass, ma . 20 meV, test
the white-dwarf (WD) cooling hypothesis [13], and explore a substantial part of uncharted axion
territory experimentally. Moreover, IAXO would explore other more generic models of weakly
interacting sub-eV particles (WISPs) [14, 15], in particular some models for axion-like particles
(ALPs) that have been invoked in the context of several unexplained astrophysical observations.
Equipped with microwave cavities or antennas, this setup could also aim at detecting relic axions
[16, 17, 18].
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2. Experimental setup and expected sensitivity
IAXO will follow the basic conceptual layout of an enhanced axion helioscope seen in figure 1,
implemented to a toroidal design for the magnet, together with x-ray optics and detectors
attached to each of the magnet bores. The improvements anticipated for each of the experimental
parameters of the helioscope were quantified in [12], organized in four scenarios (IAXO 1 to 4)
ranging from most conservative to most optimistic values (see table 1 of [12]). These values
are justified by several considerations of the magnet, x-ray optics and detectors, that are briefly
outlined in the following, but we refer to [12] for a detailed discussion.

The magnet parameters are the ones contributing mostly to the helioscope’s figure of merit.
The CAST success has relied, to a large extent, on the availability of the first class LHC test
magnet which was recycled to become part of the CAST helioscope. While going beyond CAST
magnet’s B or L is difficult, the improvement may come however in the cross section area, which
in the case of the CAST magnet is only 3 × 10−3 m2. Substantially larger cross sections can
be achieved, although one needs a different magnet configuration. It is an essential part of our
proposal that a new magnet must be designed and built specifically for this application, if one
aims at a substantial step forward in sensitivity. A toroidal configuration for the IAXO magnet
is being studied with a total cross section area A of up to few m2, while keeping the product of
BL close to levels achieved for CAST [19].

Another area for improvement will be the x-ray optics. Although CAST has proven the
concept, only one of the four CAST magnet bores is equipped with optics. The use of focusing
power in the entire magnet cross section A is implicit in the figures of merit defined in [12], and
therefore the improvement obtained by enlarging A comes in part because a correspondingly
large optic is coupled to the magnet. The optics challenge in this case is two-fold: not only must
we optimize the optic figure of merit, but we must also consider the availability of cost-effective x-
ray optics of the required size. IAXO’s optics specifications can be met by a dedicated fabrication
effort based on segmented glass substrate optics like the ones of HEFT or NuSTAR [20].

Finally, CAST has enjoyed the sustained development of its detectors towards lower
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Figure 1. Conceptual arrangement of an enhanced axion helioscope with x-ray focalization.
Solar axions are converted into photons by the transverse magnetic field inside the bore of
a powerful magnet. The resulting quasi-parallel beam of photons of cross sectional area A is
concentrated by an appropriate x-ray optics into a small spot area a in a low background detector.
The envisaged design for IAXO includes eight such magnet bores, with their respective optics
and detectors.
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Figure 2. LEFT: The parameter space for hadronic axions and ALPs. The CAST limit, some
other limits, and the range of PQ models (yellow band) are also shown. The blue lines indicate
the sensitivity of the four scenarios discussed in the text. RIGHT: The expected sensitivity
regions of the same four scenarios in the parameter space of non-hadronic axions with both
electron and photon coupling. The orange band represents the region motivated by WD cooling,
and the dashed line along the diagonal the red giants bound on the electron coupling. See [12]
for details.

backgrounds during its lifetime. The latest generation of Micromegas detectors in CAST are
achieving backgrounds of ∼ 5 × 10−6 counts keV−1 cm−2 s−1. This value is already a factor 20
better than the backgrounds recorded during the first data-taking periods of CAST. Prospects
for reducing this level to 10−7 counts keV−1 cm−2 s−1 or even lower appear feasible [21, 22].

The computed sensitivities of each of the four IAXO scenarios are represented by the family
of blue lines in figure 2, both for hadronic axions (left) and non-hadronic ones (right). They
include two data taking campaigns for each of the scenarios: one three years long performed
without buffer gas (analogous to CAST I), and another three years long period with varying
amounts of 4He gas inside the magnet bore (analogous to CAST II, although without the need
to use 3He). In general, IAXO sensitivity lines go well beyond current CAST sensitivity for
hadronic axions and progressively penetrate into the decade 10−11–10−12 GeV−1, with the best
one approaching 10−12 GeV−1. They are sensitive to realistic QCD axion models at the 10
meV scale and exclude a good fraction of them above this. For non-hadronic axions, IAXO
sensitivity lines penetrate in the DFSZ model region, approaching or even surpassing the red-
giant constraints. Most relevantly, the IAXO 3 and IAXO 4 scenarios start probing the region
of parameter space highlighted by the cooling of WDs.
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