2,534 research outputs found

    Dakwah Melalui Radio (Analisis Program Konsultasi Agama Islam Di Radio Mesra Fm)

    Get PDF
    For media information, radio playing a significant role in conveying the values of Islam which is very important in the formation of a true Muslim personalities in accordance with the demands of the Prophet Muhammad. The existence of an Islam-based radio is felt to be very important because Islam should be spread widely and truth telling is the responsibility of the Muslims as a whole. As word of Allah in Surah al-Imran: 104.`Dari permaslahan above authors take the title essay propaganda through radio (program analysis consultancy Islam in Mesra radio FM) as the research object because the writer wanted to know how the production process of consultation Islam, what enabling and inhibiting factors Islam consultation program and analyze descriptively Islam consultation program. This research is using the case study method with the aim to explain the phenomenon through data collection techniques. This type of research is descriptive qualitative approach and used the theory of critical theory and the theory of mechanics.Hasil penelitian yang didapat adalah program konsultasi agama Islam merupakan program mingguan yang mengudara mulai pukul 10.30-11.30 disetiap hari Jum\u27at. The program has a dialog format or interactive manner. Factors supporting the consultation program of Islam, namely: Supported by the government and people of the city of Pare Pare while the limiting factor is the lack of public interest in consulting the religion of Islam, the lack of infrastructure in implementing the program, bad weather at the time of the program which affects not maximal broadcasting. Islam consultation program is very useful for people, especially in the town of Pare Pare, for answering complaints or problems faced by the people in the religious practice of Islam

    R-process Nucleosynthesis from Three-Dimensional Magnetorotational Core-Collapse Supernovae

    Get PDF
    We investigate r-process nucleosynthesis in three-dimensional (3D) general-relativistic magnetohydrodynamic simulations of rapidly rotating strongly magnetized core collapse. The simulations include a microphysical finite-temperature equation of state and a leakage scheme that captures the overall energetics and lepton number exchange due to postbounce neutrino emission and absorption. We track the composition of the ejected material using the nuclear reaction network SkyNet. Our results show that the 3D dynamics of magnetorotational core-collapse supernovae (CCSN) are important for their nucleosynthetic signature. We find that production of r-process material beyond the second peak is reduced by a factor of 100 when the magnetorotational jets produced by the rapidly rotating core undergo a kink instability. Our results indicate that 3D magnetorotationally powered CCSNe are a robust r-process source only if they are obtained by the collapse of cores with unrealistically large precollapse magnetic fields of order 101310^{13}G. Additionally, a comparison simulation that we restrict to axisymmetry, results in overly optimistic r-process production for lower magnetic field strengths.Comment: 10 pages, 9 figures, 2 tables. submitted to Ap

    Unscreened Coulomb repulsion in the one dimensional electron gas

    Full text link
    A tight binding model of electrons interacting via bare Coulomb repulsion is numerically investigated by use of the Density Matrix Renormalization Group method which we prove applicable also to very long range potentials. From the analysis of the elementary excitations, of the spin and charge correlation functions and of the momentum distribution, a picture consistent with the formation of a one dimensional "Wigner crystal" emerges, in quantitative agreement with a previous bosonization study. At finite doping, Umklapp scattering is shown to be ineffective in the presence of long range forces.Comment: RevTex, 5 pages with 8 eps figures. To be published on Phys. Rev.

    Wigner Crystal in One Dimension

    Full text link
    A one--dimensional gas of electrons interacting with long--range Coulomb forces (V(r)1/rV(r) \approx 1/r) is investigated. The excitation spectrum consists of separate collective charge and spin modes, with the charge excitation energies in agreement with RPA calculations. For arbitrarily weak Coulomb repulsion density correlations at wavevector 4kF4k_F decay extremely slowly and are best described as those of a one--dimensional Wigner crystal. Pinning of the Wigner crystal then leads to the nonlinear transport properties characteristic of CDW. The results allow a consistent interpretation of the plasmon and spin excitations observed in one--dimensional semiconductor structures, and suggest an interpretation of some of the observed features in terms of ``spinons''. A possible explanation for nonlinear transport phenomena is given.Comment: 10 pages, RevTe

    Insulator-Metal Transition in One Dimension Induced by Long-Range Electronic Interactions

    Full text link
    The effects of a long range electronic potential on a one dimensional commensurate Charge Density Wave (CDW) state are investigated. Using numerical techniques it is shown that a transition to a metallic ground state is reached as the range of the electron-electron repulsion increases. In this metallic state, the optical conductivity exhibits a large Drude weight. Possible interpretations of our results are discussed.Comment: 5 pages, Revtex, minor misprints corrected and a reference to earlier work by V. Emery and C. Noguera adde

    Lattice dynamics and vibrational spectra of the orthorhombic, tetragonal and cubic phases of methylammonium lead iodide

    Get PDF
    The hybrid halide perovskite CH3NH3PbI3 exhibits a complex structural behaviour, with successive transitions between orthorhombic, tetragonal and cubic polymorphs at ca. 165 K and 327 K. Herein we report first-principles lattice dynamics (phonon spectrum) for each phase of CH3NH3PbI3. The equilibrium structures compare well to solutions of temperature-dependent powder neutron diffraction. By following the normal modes we calculate infrared and Raman intensities of the vibrations, and compare them to the measurement of a single crystal where the Raman laser is controlled to avoid degradation of the sample. Despite a clear separation in energy between low frequency modes associated with the inorganic PbI3 network and high-frequency modes of the organic CH3NH3+ cation, significant coupling between them is found, which emphasises the interplay between molecular orientation and the corner-sharing octahedral networks in the structural transformations. Soft modes are found at the boundary of the Brillouin zone of the cubic phase, consistent with displacive instabilities and anharmonicity involving tilting of the PbI6 octahedra around room temperature.Comment: 9 pages, 4 figure

    Tunneling Between a Pair of Parallel Hall Droplets

    Full text link
    In this paper, we examine interwell tunneling between a pair of fractional quantum Hall liquids in a double quantum well system in a tilted magnetic field. Using a variational Monte Carlo method, we calculate moments of the intra-Landau level tunneling spectrum as a function of in-plane field component BB_{\parallel} and interwell spacing dd. This is done for variety of incompressible states including a pair of ν=1/3\nu=1/3 layers ([330]), pair of ν=1/5\nu=1/5 layers ([550]), and Halperin's [331] state. The results suggest a technique to extract interwell correlations from the tunneling spectral data.Comment: 21 pages and 8 figures (included), RevTeX, preprint no. UCSDCU

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13
    corecore