1,059 research outputs found
Early Life Microbiota Colonization at Six Months of Age: A Transitional Time Point
Background: Early life gut microbiota is involved in several biological processes, particularly metabolism, immunity, and cognitive neurodevelopment. Perturbation in the infant's gut microbiota increases the risk for diseases in early and later life, highlighting the importance of understanding the connections between perinatal factors with early life microbial composition. The present research paper is aimed at exploring the prenatal and postnatal factors influencing the infant gut microbiota composition at six months of age.
Methods: Gut microbiota of infants enrolled in the longitudinal, prospective, observational study "A.MA.MI" (Alimentazione MAmma e bambino nei primi MIlle giorni) was analyzed. We collected and analyzed 61 fecal samples at baseline (meconium, T0); at six months of age (T2), we collected and analyzed 53 fecal samples. Samples were grouped based on maternal and gestational weight factors, type of delivery, type of feeding, time of weaning, and presence/absence of older siblings. Alpha and beta diversities were evaluated to describe microbiota composition. Multivariate analyses were performed to understand the impact of the aforementioned factors on the infant's microbiota composition at six months of age.
Results: Different clustering hypotheses have been tested to evaluate the impact of known metadata factors on the infant microbiota. Neither maternal body mass index nor gestational weight gain was able to determine significant differences in infant microbiota composition six months of age. Concerning the type of feeding, we observed a low alpha diversity in exclusive breastfed infants; conversely, non-exclusively breastfed infants reported an overgrowth of Ruminococcaceae and Flavonifractor. Furthermore, we did not find any statistically significant difference resulting from an early introduction of solid foods (before 4 months of age). Lastly, our sample showed a higher abundance of clostridial patterns in firstborn babies when compared to infants with older siblings in the family.
Conclusion: Our findings showed that, at this stage of life, there is not a single factor able to affect in a distinct way the infants' gut microbiota development. Rather, there seems to be a complex multifactorial interaction between maternal and neonatal factors determining a unique microbial niche in the gastrointestinal tract
Accurate calibration of test mass displacement in the LIGO interferometers
We describe three fundamentally different methods we have applied to
calibrate the test mass displacement actuators to search for systematic errors
in the calibration of the LIGO gravitational-wave detectors. The actuation
frequencies tested range from 90 Hz to 1 kHz and the actuation amplitudes range
from 1e-6 m to 1e-18 m. For each of the four test mass actuators measured, the
weighted mean coefficient over all frequencies for each technique deviates from
the average actuation coefficient for all three techniques by less than 4%.
This result indicates that systematic errors in the calibration of the
responses of the LIGO detectors to differential length variations are within
the stated uncertainties.Comment: 10 pages, 6 figures, submitted on 31 October 2009 to Classical and
Quantum Gravity for the proceedings of 8th Edoardo Amaldi Conference on
Gravitational Wave
Prenatal and postnatal determinants in shaping offspring's microbiome in the first 1000 days: Study protocol and preliminary results at one month of life
Background: Fetal programming during in utero life defines the set point of physiological and metabolic responses that lead into adulthood; events happening in "the first 1,000 days" (from conception to 2-years of age), play a role in the development of non-communicable diseases (NCDs). The infant gut microbiome is a highly dynamic organ, which is sensitive to maternal and environmental factors and is one of the elements driving intergenerational NCDs' transmission. The A.MA.MI (Alimentazione MAmma e bambino nei primi MIlle giorni) project aims at investigating the correlation between several factors, from conception to the first year of life, and infant gut microbiome composition. We described the study design of the A.MA.MI study and presented some preliminary results. Methods: A.MA.MI is a longitudinal, prospective, observational study conducted on a group of mother-infant pairs (n = 60) attending the Neonatal Unit, Fondazione IRCCS Policlinico San Matteo, Pavia (Italy). The study was planned to provide data collected at T0, T1, T2 and T3, respectively before discharge, 1,6 and 12 months after birth. Maternal and infant anthropometric measurements were assessed at each time. Other variables evaluated were: Pre-pregnancy/gestational weight status (T0), maternal dietary habits/physical activity (T1-T3); infant medical history, type of feeding, antibiotics/probiotics/supplements use, environment exposures (e.g cigarette smoking, pets, environmental temperature) (T1-T3). Infant stool samples were planned to be collected at each time and analyzed using metagenomics 16S ribosomal RNA gene sequence-based methods. Results: Birth mode (cesarean section vs. vaginal delivery) and maternal pre pregnancy BMI (BMI < 25 Kg/m2 vs. BMI ≥ 25 Kg/m2), significant differences were found at genera and species levels (T0). Concerning type of feeding (breastfed vs. formula-fed), gut microbiota composition differed significantly at genus and species level (T1). Conclusion: These preliminary and explorative results confirmed that pre-pregnancy, mode of delivery and infant factors likely impact infant microbiota composition at different levels. Trial registration: ClinicalTrials.gov identifier: NCT04122612
Triangulation of gravitational wave sources with a network of detectors
There is significant benefit to be gained by pursuing multi-messenger
astronomy with gravitational wave and electromagnetic observations. In order to
undertake electromagnetic follow-ups of gravitational wave signals, it will be
necessary to accurately localize them in the sky. Since gravitational wave
detectors are not inherently pointing instruments, localization will occur
primarily through triangulation with a network of detectors. We investigate the
expected timing accuracy for observed signals and the consequences for
localization. In addition, we discuss the effect of systematic uncertainties in
the waveform and calibration of the instruments on the localization of sources.
We provide illustrative results of timing and localization accuracy as well as
systematic effects for coalescing binary waveforms.Comment: 20 pages, 5 figure
Performance of the LHCb vertex locator
The Vertex Locator (VELO) is a silicon microstrip detector that surrounds the proton-proton interaction region in the LHCb experiment. The performance of the detector during the first years of its physics operation is reviewed. The system is operated in vacuum, uses a bi-phase CO2 cooling system, and the sensors are moved to 7 mm from the LHC beam for physics data taking. The performance and stability of these characteristic features of the detector are described, and details of the material budget are given. The calibration of the timing and the data processing algorithms that are implemented in FPGAs are described. The system performance is fully characterised. The sensors have a signal to noise ratio of approximately 20 and a best hit resolution of 4 μm is achieved at the optimal track angle. The typical detector occupancy for minimum bias events in standard operating conditions in 2011 is around 0.5%, and the detector has less than 1% of faulty strips. The proximity of the detector to the beam means that the inner regions of the n+-on-n sensors have undergone space-charge sign inversion due to radiation damage. The VELO performance parameters that drive the experiment's physics sensitivity are also given. The track finding efficiency of the VELO is typically above 98% and the modules have been aligned to a precision of 1 μm for translations in the plane transverse to the beam. A primary vertex resolution of 13 μm in the transverse plane and 71 μm along the beam axis is achieved for vertices with 25 tracks. An impact parameter resolution of less than 35 μm is achieved for particles with transverse momentum greater than 1 GeV/c
Astrophysically Triggered Searches for Gravitational Waves: Status and Prospects
In gravitational-wave detection, special emphasis is put onto searches that
focus on cosmic events detected by other types of astrophysical observatories.
The astrophysical triggers, e.g. from gamma-ray and X-ray satellites, optical
telescopes and neutrino observatories, provide a trigger time for analyzing
gravitational wave data coincident with the event. In certain cases the
expected frequency range, source energetics, directional and progenitor
information is also available. Beyond allowing the recognition of gravitational
waveforms with amplitudes closer to the noise floor of the detector, these
triggered searches should also lead to rich science results even before the
onset of Advanced LIGO. In this paper we provide a broad review of LIGO's
astrophysically triggered searches and the sources they target
Precision luminosity measurements at LHCb
Measuring cross-sections at the LHC requires the luminosity to be determined accurately at each centre-of-mass energy √s. In this paper results are reported from the luminosity calibrations carried out at the LHC interaction point 8 with the LHCb detector for √s = 2.76, 7 and 8 TeV (proton-proton collisions) and for √sNN = 5 TeV (proton-lead collisions). Both the "van der Meer scan" and "beam-gas imaging" luminosity calibration methods were employed. It is observed that the beam density profile cannot always be described by a function that is factorizable in the two transverse coordinates. The introduction of a two-dimensional description of the beams improves significantly the consistency of the results. For proton-proton interactions at √s = 8 TeV a relative precision of the luminosity calibration of 1.47% is obtained using van der Meer scans and 1.43% using beam-gas imaging, resulting in a combined precision of 1.12%. Applying the calibration to the full data set determines the luminosity with a precision of 1.16%. This represents the most precise luminosity measurement achieved so far at a bunched-beam hadron collider
Opposite-side flavour tagging of B mesons at the LHCb experiment
The calibration and performance of the oppositeside
flavour tagging algorithms used for the measurements
of time-dependent asymmetries at the LHCb experiment
are described. The algorithms have been developed using
simulated events and optimized and calibrated with
B
+ →J/ψK
+, B0 →J/ψK
∗0 and B0 →D
∗−
μ
+
νμ decay
modes with 0.37 fb−1 of data collected in pp collisions
at
√
s = 7 TeV during the 2011 physics run. The oppositeside
tagging power is determined in the B
+ → J/ψK
+
channel to be (2.10 ± 0.08 ± 0.24) %, where the first uncertainty
is statistical and the second is systematic
Measurement of the ratio of branching fractions BR(B0 -> K*0 gamma)/BR(Bs0 -> phi gamma)
The ratio of branching fractions of the radiative B decays B0 -> K*0 gamma
and Bs0 -> phi gamma has been measured using 0.37 fb-1 of pp collisions at a
centre of mass energy of sqrt(s) = 7 TeV, collected by the LHCb experiment. The
value obtained is BR(B0 -> K*0 gamma)/BR(Bs0 -> phi gamma) = 1.12 +/- 0.08
^{+0.06}_{-0.04} ^{+0.09}_{-0.08}, where the first uncertainty is statistical,
the second systematic and the third is associated to the ratio of fragmentation
fractions fs/fd. Using the world average for BR(B0 -> K*0 gamma) = (4.33 +/-
0.15) x 10^{-5}, the branching fraction BR(Bs0 -> phi gamma) is measured to be
(3.9 +/- 0.5) x 10^{-5}, which is the most precise measurement to date.Comment: 15 pages, 1 figure, 2 table
Sensitivity to Gravitational Waves from Compact Binary Coalescences Achieved during LIGO's Fifth and Virgo's First Science Run
We summarize the sensitivity achieved by the LIGO and Virgo gravitational
wave detectors for compact binary coalescence (CBC) searches during LIGO's
fifth science run and Virgo's first science run. We present noise spectral
density curves for each of the four detectors that operated during these
science runs which are representative of the typical performance achieved by
the detectors for CBC searches. These spectra are intended for release to the
public as a summary of detector performance for CBC searches during these
science runs.Comment: 12 pages, 5 figure
- …