179 research outputs found
Recommended from our members
Cooling rates of chondrules from diffusion profiles in relict olivine grains
Chondrule cooling rates are one of the important constraints on chondrule formation and can be used to distinguish between different chondrule formation mechanisms. Here we have modelled diffusion profiles observed across the boundary between forsteritic-olivine relict grains and more fayalitic overgrowth. We show that the cooling of chondrules is complex and good model fits are produced with non-linear cooling rates, offering additional scope for constraining the origin of chondrules
Melting and differentiation of early-formed asteroids: The perspective from high precision oxygen isotope studies
A number of distinct methodologies are available for determining the oxygen isotope composition of minerals and rocks, these include laser-assisted fluorination, secondary ion mass spectrometry (SIMS)and UV laser ablation. In this review we focus on laser-assisted fluorination, which currently achieves the highest levels of precision available for oxygen isotope analysis. In particular, we examine how results using this method have furthered our understanding of early-formed differentiated meteorites. Due to its rapid reaction times and low blank levels, laser-assisted fluorination has now largely superseded the conventional externally-heated Ni âbombâ technique for bulk analysis. Unlike UV laser ablation and SIMS analysis, laser-assisted fluorination is not capable of focused spot analysis. While laser fluorination is now a mature technology, further analytical improvements are possible via refinements to the construction of sample chambers, clean-up lines and the use of ultra-high resolution mass spectrometers.
High-precision oxygen isotope analysis has proved to be a particularly powerful technique for investigating the formation and evolution of early-formed differentiated asteroids and has provided unique insights into the interrelationships between various groups of achondrites. A clear example of this is seenin samples that lie close to the terrestrial fractionation line (TFL). Based on the data from conventional oxygen isotope analysis, it was suggested that the main-group pallasites, the howardite eucrite diogenite suite (HEDs) and mesosiderites could all be derived from a single common parent body. However,high precision analysis demonstrates that main-group pallasites have a Î17O composition that is fully resolvable from that of the HEDs and mesosiderites, indicating the involvement of at least two parent bodies. The range of Î17O values exhibited by an achondrite group provides a useful means of assessing the extent to which their parent body underwent melting and isotopic homogenization. Oxygen isotope analysis can also highlight relationships between ungrouped achondrites and the more well-populated groups. A clear example of this is the proposed link between the evolved GRA 06128/9 meteorites and the brachinites.
The evidence from oxygen isotopes, in conjunction with that from other techniques, indicates that we have samples from approximately 110 asteroidal parent bodies (âŒ60 irons, âŒ35 achondrites and stony-iron, and âŒ15 chondrites) in our global meteorite collection. However, compared to the likely size of the original protoplanetary asteroid population, this is an extremely low value. In addition, almost all of the differentiated samples (achondrites, stony-iron and irons) are derived from parent bodies that were highly disrupted early in their evolution.
High-precision oxygen isotope analysis of achondrites provides some important insights into the origin of mass-independent variation in the early Solar System. In particular, the evidence from various primitive achondrite groups indicates that both the slope 1 (Y&R) and CCAM lines are of primordial significance. Î17O differences between water ice and silicate-rich solids were probably the initial source of the slope 1 anomaly. These phases most likely acquired their isotopic composition as a result of UV photo-dissociation of CO that took place either in the early solar nebula or precursor giant molecular cloud. Such small-scale isotopic heterogeneities were propagated into larger-sized bodies, such as asteroids and planets, as a result of early Solar System processes, including dehydration, aqueous alteration,melting and collisional interactions
Anaplastic carcinoma of the pancreas producing granulocyte-colony stimulating factor: a case report
<p>Abstract</p> <p>Introduction</p> <p>The granulocyte-colony stimulating factor-producing tumor was first reported in 1977, however, anaplastic pleomorphic type carcinoma of the pancreas producing granulocyte-colony stimulating factor is still rare.</p> <p>Case presentation</p> <p>A 63-year-old man was admitted to our hospital with body weight loss (-10 kg during months) and upper abdominal pain from 3 weeks. Abdominal computed tomography demonstrated a pancreatic tumor 10 cm in size and multiple low-density areas in the liver. On admission, the peripheral leukocyte count was elevated to 91,500/mm<sup>3 </sup>and the serum concentration of granulocyte-colony stimulating factor was 134 pg/mL (normal, < 18.1 pg/mL). Based on liver biopsy findings, the tumor was classified as an anaplastic pleomorphic-type carcinoma. Immunohistochemical staining showed that pancreatic carcinoma cells were positive for granulocyte-colony stimulating factor. The patient developed interstitial pneumonia, probably caused by granulocyte-colony stimulating factor, and died 11 days after admission.</p> <p>Conclusion</p> <p>This is a rare case report of anaplastic pleomorphic-type carcinoma of the pancreas producing granulocyte-colony stimulating factor and confirmed by immunohistochemistry.</p
Boom boom pow: Shock-facilitated aqueous alteration and evidence for two shock events in the Martian nakhlite meteorites
Nakhlite meteorites are ~1.4 to 1.3 Ga old igneous rocks, aqueously altered on Mars ~630 Ma ago. We test the theory that water-rock interaction was impact driven. Electron backscatter diffraction demonstrates that the meteorites Miller Range 03346 and Lafayette were heterogeneously deformed, leading to localized regions of brecciation, plastic deformation, and mechanical twinning of augite. Numerical modeling shows that the pattern of deformation is consistent with shock-generated compressive and tensile stresses. Mesostasis within shocked areas was aqueously altered to phyllosilicates, carbonates, and oxides, suggesting a genetic link between the two processes. We propose that an impact ~630 Ma ago simultaneously deformed the nakhlite parent rocks and generated liquid water by melting of permafrost. Ensuing water-rock interaction focused on shocked mesostasis with a high density of reactive sites. The nakhlite source location must have two spatially correlated craters, one ~630 Ma old and another, ejecting the meteorites, ~11 Ma ago
Screen-detected colorectal cancers are associated with an improved outcome compared with stage-matched interval cancers
Background: Colorectal cancers (CRCs) detected through the NHS Bowel Cancer Screening Programme (BCSP) have been shown to have a more favourable outcome compared to non-screen-detected cancers. The aim was to identify whether this was solely due to the earlier stage shift of these cancers, or whether other factors were involved. Methods: A combination of a regional CRC registry (Northern Colorectal Cancer Audit Group) and the BCSP database were used to identify screen-detected and interval cancers (diagnosed after a negative faecal occult blood test, before the next screening round), diagnosed between April 2007 and March 2010, within the North East of England. For each Dukes' stage, patient demographics, tumour characteristics, and survival rates were compared between these two groups. Results: Overall, 322 screen-detected cancers were compared against 192 interval cancers. Screen-detected Dukes' C and D CRCs had a superior survival rate compared with interval cancers (P=0.014 and P=0.04, respectively). Cox proportional hazards regression showed that Dukes' stage, tumour location, and diagnostic group (HR 0.45, 95% CI 0.29-0.69, P<0.001 for screen-detected CRCs) were all found to have a significant impact on the survival of patients. Conclusions: The improved survival of screen-detected over interval cancers for stages C and D suggest that there may be a biological difference in the cancers in each group. Although lead-time bias may have a role, this may be related to a tumour's propensity to bleed and therefore may reflect detection through current screening tests
Ileal immune tonus is a prognosis marker of proximal colon cancer in mice and patients
Ileal epithelial cell apoptosis and the local microbiota modulate the effects of oxaliplatin against proximal colon cancer by modulating tumor immunosurveillance. Here, we identified an ileal immune profile associated with the prognosis of colon cancer and responses to chemotherapy. The whole immune ileal transcriptome was upregulated in poor-prognosis patients with proximal colon cancer, while the colonic immunity of healthy and neoplastic areas was downregulated (except for the Th17 fingerprint) in such patients. Similar observations were made across experimental models of implanted and spontaneous murine colon cancer, showing a relationship between carcinogenesis and ileal inflammation. Conversely, oxaliplatin-based chemotherapy could restore a favorable, attenuated ileal immune fingerprint in responders. These results suggest that chemotherapy inversely shapes the immune profile of the ileum-tumor axis, influencing clinical outcome
Hybrid laparoscopic versus fully robot-assisted minimally invasive esophagectomy:an international propensity-score matched analysis of perioperative outcome
Background: Currently, little is known regarding the optimal technique for the abdominal phase of RAMIE. The aim of this study was to investigate the outcome of robot-assisted minimally invasive esophagectomy (RAMIE) in both the abdominal and thoracic phase (full RAMIE) compared to laparoscopy during the abdominal phase (hybrid laparoscopic RAMIE). Methods: This retrospective propensity-score matched analysis of the International Upper Gastrointestinal International Robotic Association (UGIRA) database included 807 RAMIE procedures with intrathoracic anastomosis between 2017 and 2021 from 23 centers. Results: After propensity-score matching, 296 hybrid laparoscopic RAMIE patients were compared to 296 full RAMIE patients. Both groups were equal regarding intraoperative blood loss (median 200Â ml versus 197Â ml, p = 0.6967), operational time (mean 430.3Â min versus 417.7Â min, p = 0.1032), conversion rate during abdominal phase (2.4% versus 1.7%, p = 0.560), radical resection (R0) rate (95.6% versus 96.3%, p = 0.8526) and total lymph node yield (mean 30.4 versus 29.5, p = 0.3834). The hybrid laparoscopic RAMIE group showed higher rates of anastomotic leakage (28.0% versus 16.6%, p = 0.001) and Clavien Dindo grade 3a or higher (45.3% versus 26.0%, p < 0.001). The length of stay on intensive care unit (median 3Â days versus 2Â days, p = 0.0005) and in-hospital (median 15Â days versus 12Â days, p < 0.0001) were longer for the hybrid laparoscopic RAMIE group. Conclusions: Hybrid laparoscopic RAMIE and full RAMIE were oncologically equivalent with a potential decrease of postoperative complications and shorter (intensive care) stay after full RAMIE.</p
Neuer Kopf, alte Ideen? : "Normalisierung" des Front National unter Marine Le Pen
In this article, it is investigated
whether vibrational entropy
(VE) is an important contribution to the free energy of globular proteins
at ambient conditions. VE represents the major configurational-entropy
contribution of these proteins. By definition, it is an average of
the configurational entropies of the protein within single minima
of the energy landscape, weighted by their occupation probabilities.
Its large part originates from thermal motion of flexible torsion
angles giving rise to the finite peak widths observed in torsion angle
distributions. While VE may affect the equilibrium properties of proteins,
it is usually neglected in numerical calculations as its consideration
is difficult. Moreover, it is sometimes believed that all well-packed
conformations of a globular protein have similar VE anyway. Here, we measure explicitly the VE for six different conformations from simulation data of a test protein. Estimates
are obtained using the quasi-harmonic approximation for three coordinate
sets, Cartesian, bond-angle-torsion (BAT), and a new set termed rotamer-degeneracy
lifted BAT coordinates by us. The new set gives improved estimates
as it overcomes a known shortcoming of the quasi-harmonic approximation
caused by multiply populated rotamer states, and it may serve for
VE estimation of macromolecules in a very general context. The obtained
VE values depend considerably on the type of coordinates used. However,
for all coordinate sets we find large entropy differences between
the conformations, of the order of the overall stability of the protein.
This result may have important implications on the choice of free
energy expressions used in software for protein structure prediction,
protein design, and NMR refinement
- âŠ