761 research outputs found

    Complex molecules toward low-mass protostars: the Serpens core

    Full text link
    Gas-phase complex organic molecules are commonly detected toward high-mass protostellar hot cores. Detections toward low-mass protostars and outflows are comparatively rare, and a larger sample is key to investigate how the chemistry responds to its environment. Guided by the prediction that complex organic molecules form in CH3OH-rich ices and thermally or non-thermally evaporate with CH3OH, we have identified three sight-lines in the Serpens core - SMM1, SMM4 and SMM4-W - which are likely to be rich in complex organics. Using the IRAM 30m telescope, narrow lines (FWHM of 1-2 km s-1) of CH3CHO and CH3OCH3 are detected toward all sources, HCOOCH3 toward SMM1 and SMM4-W, and C2H5OH not at all. Beam-averaged abundances of individual complex organics range between 0.6 and 10% with respect to CH3OH when the CH3OH rotational temperature is applied. The summed complex organic abundances also vary by an order of magnitude, with the richest chemistry toward the most luminous protostar SMM1. The range of abundances compare well with other beam-averaged observations of low-mass sources. Complex organic abundances are of the same order of magnitude toward low-mass protostars and high-mass hot cores, but HCOOCH3 is relatively more important toward low-mass protostars. This is consistent with a sequential ice photochemistry, dominated by CHO-containing products at low temperatures and early times.Comment: 20 pages, including 5 figures. Accepted for publication in Ap

    Quantification of segregation dynamics in ice mixtures

    Full text link
    (Abridged) The observed presence of pure CO2 ice in protostellar envelopes is attributed to thermally induced ice segregation, but a lack of quantitative experimental data has prevented its use as a temperature probe. Quantitative segregation studies are also needed to characterize diffusion in ices, which underpins all ice dynamics and ice chemistry. This study aims to quantify the segregation mechanism and barriers in different H2O:CO2 and H2O:CO ice mixtures covering a range of astrophysically relevant ice thicknesses and mixture ratios. The ices are deposited at 16-50 K under (ultra-)high vacuum conditions. Segregation is then monitored at 23-70 K as a function of time, through infrared spectroscopy. Thin (8-37 ML) H2O:CO2/CO ice mixtures segregate sequentially through surface processes, followed by an order of magnitude slower bulk diffusion. Thicker ices (>100 ML) segregate through a fast bulk process. The thick ices must therefore be either more porous or segregate through a different mechanism, e.g. a phase transition. The segregation dynamics of thin ices are reproduced qualitatively in Monte Carlo simulations of surface hopping and pair swapping. The experimentally determined surface-segregation rates for all mixture ratios follow the Ahrrenius law with a barrier of 1080[190] K for H2O:CO2 and 300[100] K for H2O:CO mixtures. During low-mass star formation H2O:CO2 segregation will be important already at 30[5] K. Both surface and bulk segregation is proposed to be a general feature of ice mixtures when the average bond strengths of the mixture constituents in pure ice exceeds the average bond strength in the ice mixture.Comment: Accepted for publication in A&A. 25 pages, including 13 figure

    Photodesorption of CO ice

    Get PDF
    At the high densities and low temperatures found in star forming regions, all molecules other than H2 should stick on dust grains on timescales shorter than the cloud lifetimes. Yet these clouds are detected in the millimeter lines of gaseous CO. At these temperatures, thermal desorption is negligible and hence a non-thermal desorption mechanism is necessary to maintain molecules in the gas phase. Here, the first laboratory study of the photodesorption of pure CO ice under ultra high vacuum is presented, which gives a desorption rate of 3E-3 CO molecules per UV (7-10.5 eV) photon at 15 K. This rate is factors of 1E2-1E5 larger than previously estimated and is comparable to estimates of other non-thermal desorption rates. The experiments constrains the mechanism to a single photon desorption process of ice surface molecules. The measured efficiency of this process shows that the role of CO photodesorption in preventing total removal of molecules in the gas has been underestimated.Comment: 5 pages, 4 figures, accepted by ApJ

    The c2d Spitzer Spectroscopic Survey of Ices Around Low-Mass Young Stellar Objects. IV. NH3 and CH3OH

    Get PDF
    NH3 and CH3OH are key molecules in astrochemical networks leading to the formation of more complex N- and O-bearing molecules, such as CH3CN and HCOOCH3. Despite a number of recent studies, little is known about their abundances in the solid state. (...) In this work, we investigate the ~ 8-10 micron region in the Spitzer IRS (InfraRed Spectrograph) spectra of 41 low-mass young stellar objects (YSOs). These data are part of a survey of interstellar ices in a sample of low-mass YSOs studied in earlier papers in this series. We used both an empirical and a local continuum method to correct for the contribution from the 10 micron silicate absorption in the recorded spectra. In addition, we conducted a systematic laboratory study of NH3- and CH3OH-containing ices to help interpret the astronomical spectra. We clearly detect a feature at ~9 micron in 24 low-mass YSOs. Within the uncertainty in continuum determination, we identify this feature with the NH3 nu_2 umbrella mode, and derive abundances with respect to water between ~2 and 15%. Simultaneously, we also revisited the case of CH3OH ice by studying the nu_4 C-O stretch mode of this molecule at ~9.7 micron in 16 objects, yielding abundances consistent with those derived by Boogert et al. 2008 (hereafter paper I) based on a simultaneous 9.75 and 3.53 micron data analysis. Our study indicates that NH3 is present primarily in H2O-rich ices, but that in some cases, such ices are insufficient to explain the observed narrow FWHM. The laboratory data point to CH3OH being in an almost pure methanol ice, or mixed mainly with CO or CO2, consistent with its formation through hydrogenation on grains. Finally, we use our derived NH3 abundances in combination with previously published abundances of other solid N-bearing species to find that up to 10-20 % of nitrogen is locked up in known ices.Comment: 31 pages, 15 figures, accepted for publication in Ap

    Cold gas as an ice diagnostic toward low mass protostars

    Full text link
    Up to 90% of the chemical reactions during star formation occurs on ice surfaces, probably including the formation of complex organics. Only the most abundant ice species are however observed directly by infrared spectroscopy. This study aims to develop an indirect observational method of ices based on non-thermal ice desorption in the colder part of protostellar envelopes. For that purpose the IRAM 30m telescope was employed to observe two molecules that can be detected both in the gas and the ice, CH3 OH and HNCO, toward 4 low mass embedded protostars. Their respective gas-phase column densities are determined using rotational diagrams. The relationship between ice and gas phase abundances is subsequently determined. The observed gas and ice abundances span several orders of magnitude. Most of the CH3OH and HNCO gas along the lines of sight is inferred to be quiescent from the measured line widths and the derived excitation temperatures, and hence not affected by thermal desorption close to the protostar or in outflow shocks. The measured gas to ice ratio of ~10-4 agrees well with model predictions for non-thermal desorption under cold envelope conditions and there is a tentative correlation between ice and gas phase abundances. This indicates that non-thermal desorption products can serve as a signature of the ice composition. A larger sample is however necessary to provide a conclusive proof of concept.Comment: accepted by A&A letters, 10 pages including 5 figure

    Photodesorption of Ices II: H2O and D2O

    Full text link
    Gaseous H2O has been detected in several cold astrophysical environments, where the observed abundances cannot be explained by thermal desorption of H2O ice or by H2O gas phase formation. These observations hence suggest an efficient non-thermal ice desorption mechanism. Here, we present experimentally determined UV photodesorption yields of H2O and D2O ice and deduce their photodesorption mechanism. The ice photodesorption is studied under ultra high vacuum conditions and at astrochemically relevant temperatures (18-100 K) using a hydrogen discharge lamp (7-10.5 eV), which simulates the interstellar UV field. The ice desorption during irradiation is monitored using reflection absorption infrared spectroscopy of the ice and simultaneous mass spectrometry of the desorbed species. The photodesorption yield per incident photon is identical for H2O and D2O and depends on both ice thickness and temperature. For ices thicker than 8 monolayers the photodesorption yield Y is linearly dependent on temperature due to increased diffusion of ice species such that Y(T) = 1E-3(1.3+0.032*T) UV photon-1, with a 60% uncertainty for the absolute yield. The increased diffusion also results in an increasing H2O:OH desorption product ratio with temperature. The yield does not depend on the substrate, the UV photon flux or the UV fluence. The yield is also independent on the initial ice structure since UV photons efficiently amorphize H2O ice. The results are consistent with theoretical predictions of H2O photodesorption and partly in agreement with a previous experimental study. Applying the experimentally determined yield to a Herbig Ae/Be star+disk model shows that UV photodesorption of ices increases the H2O content by orders of magnitude in the disk surface region compared to models where non-thermal desorption is ignored.Comment: 21 pages including 8 figures. Accepted for publication in ApJ. Prepared using emulateapj. Abstract is shortened to fit the Astro-ph forma

    Methanol ice co-desorption as a mechanism to explain cold methanol in the gas-phase

    Get PDF
    Context. Methanol is formed via surface reactions on icy dust grains. Methanol is also detected in the gas-phase at temperatures below its thermal desorption temperature and at levels higher than can be explained by pure gas-phase chemistry. The process that controls the transition from solid state to gas-phase methanol in cold environments is not understood. Aims. The goal of this work is to investigate whether thermal CO desorption provides an indirect pathway for methanol to co-desorb at low temperatures. Methods. Mixed CH₃OH:CO/CH₄ ices were heated under ultra-high vacuum conditions and ice contents are traced using RAIRS (reflection absorption IR spectroscopy), while desorbing species were detected mass spectrometrically. An updated gas-grain chemical network was used to test the impact of the results of these experiments. The physical model used is applicable for TW Hya, a protoplanetary disk in which cold gas-phase methanol has recently been detected. Results. Methanol release together with thermal CO desorption is found to be an ineffective process in the experiments, resulting in an upper limit of ≀ 7.3 × 10−7 CH₃OH molecules per CO molecule over all ice mixtures considered. Chemical modelling based on the upper limits shows that co-desorption rates as low as 10−6 CH₃OH molecules per CO molecule are high enough to release substantial amounts of methanol to the gas-phase at and around the location of the CO thermal desorption front in a protoplanetary disk. The impact of thermal co-desorption of CH₃OH with CO as a grain-gas bridge mechanism is compared with that of UV induced photodesorption and chemisorption

    Desorption of CO and O2 interstellar ice analogs

    Get PDF
    Solid O2 has been proposed as a possible reservoir for oxygen in dense clouds through freeze-out processes. The aim of this work is to characterize quantitatively the physical processes that are involved in the desorption kinetics of CO-O2 ices by interpreting laboratory temperature programmed desorption (TPD) data. This information is used to simulate the behavior of CO-O2 ices under astrophysical conditions. The TPD spectra have been recorded under ultra high vacuum conditions for pure, layered and mixed morphologies for different thicknesses, temperatures and mixing ratios. An empirical kinetic model is used to interpret the results and to provide input parameters for astrophysical models. Binding energies are determined for different ice morphologies. Independent of the ice morphology, the desorption of O2 is found to follow 0th-order kinetics. Binding energies and temperature-dependent sticking probabilities for CO-CO, O2-O2 and CO-O2 are determined. O2 is slightly less volatile than CO, with binding energies of 912+-15 versus 858+-15 K for pure ices. In mixed and layered ices, CO does not co-desorb with O2 but its binding energies are slightly increased compared with pure ice whereas those for O2 are slightly decreased. Lower limits to the sticking probabilities of CO and O2 are 0.9 and 0.85, respectively, at temperatures below 20K. The balance between accretion and desorption is studied for O2 and CO in astrophysically relevant scenarios. Only minor differences are found between the two species, i.e., both desorb between 16 and 18K in typical environments around young stars. Thus, clouds with significant abundances of gaseous CO are unlikely to have large amounts of solid O2.Comment: 8 pages + 2 pages online material, 8 figures (1 online), accepted by A&

    The chemistry of C3 & Carbon Chain Molecules in DR21(OH)

    Get PDF
    (Abridged) We have observed velocity resolved spectra of four ro-vibrational far-infrared transitions of C3 between the vibrational ground state and the low-energy nu2 bending mode at frequencies between 1654--1897 GHz using HIFI on board Herschel, in DR21(OH), a high mass star forming region. Several transitions of CCH and c-C3H2 have also been observed with HIFI and the IRAM 30m telescope. A gas and grain warm-up model was used to identify the primary C3 forming reactions in DR21(OH). We have detected C3 in absorption in four far-infrared transitions, P(4), P(10), Q(2) and Q(4). The continuum sources MM1 and MM2 in DR21(OH) though spatially unresolved, are sufficiently separated in velocity to be identified in the C3 spectra. All C3 transitions are detected from the embedded source MM2 and the surrounding envelope, whereas only Q(4) & P(4) are detected toward the hot core MM1. The abundance of C3 in the envelope and MM2 is \sim6x10^{-10} and \sim3x10^{-9} respectively. For CCH and c-C3H2 we only detect emission from the envelope and MM1. The observed CCH, C3, and c-C3H2 abundances are most consistent with a chemical model with n(H2)\sim5x10^{6} cm^-3 post-warm-up dust temperature, T_max =30 K and a time of \sim0.7-3 Myr. Post warm-up gas phase chemistry of CH4 released from the grain at t\sim 0.2 Myr and lasting for 1 Myr can explain the observed C3 abundance in the envelope of DR21(OH) and no mechanism involving photodestruction of PAH molecules is required. The chemistry in the envelope is similar to the warm carbon chain chemistry (WCCC) found in lukewarm corinos. The observed lower C3 abundance in MM1 as compared to MM2 and the envelope could be indicative of destruction of C3 in the more evolved MM1. The timescale for the chemistry derived for the envelope is consistent with the dynamical timescale of 2 Myr derived for DR21(OH) in other studies.Comment: 11 Pages, 6 figures, accepted for publication in A&
    • 

    corecore