4,190 research outputs found

    Study of thermometers for measuring a microcanonical phase transition in nuclear fragmentation

    Full text link
    The aim of this work is to study how the thermodynamic temperature is related to the known thermometers for nuclei especially in view of studying the microcanonical phase transition. We find within the MMMC-model that the "S-shape" of the caloric equation of state e^*(T) which is the signal of a phase transition in a system with conserved energy, can be seen in the experimentally accessible slope temperatures T_slope for different particle types and also in the isotopic temperatures T_He-Li. The isotopic temperatures T_H-He are weaker correlated to the shape of the thermodynamic temperature and therefore are less favorable to study the signal of a microcanonical phase transition. We also show that the signal is very sensitive to variations in mass of the source

    Automated reliability assessment for spectroscopic redshift measurements

    Get PDF
    We present a new approach to automate the spectroscopic redshift reliability assessment based on machine learning (ML) and characteristics of the redshift probability density function (PDF). We propose to rephrase the spectroscopic redshift estimation into a Bayesian framework, in order to incorporate all sources of information and uncertainties related to the redshift estimation process, and produce a redshift posterior PDF that will be the starting-point for ML algorithms to provide an automated assessment of a redshift reliability. As a use case, public data from the VIMOS VLT Deep Survey is exploited to present and test this new methodology. We first tried to reproduce the existing reliability flags using supervised classification to describe different types of redshift PDFs, but due to the subjective definition of these flags, soon opted for a new homogeneous partitioning of the data into distinct clusters via unsupervised classification. After assessing the accuracy of the new clusters via resubstitution and test predictions, unlabelled data from preliminary mock simulations for the Euclid space mission are projected into this mapping to predict their redshift reliability labels.Comment: Submitted on 02 June 2017 (v1). Revised on 08 September 2017 (v2). Latest version 28 September 2017 (this version v3

    The spatial ecology of free-ranging domestic pigs (Sus scrofa) in western Kenya

    Get PDF
    Background In many parts of the developing world, pigs are kept under low-input systems where they roam freely to scavenge food. These systems allow poor farmers the opportunity to enter into livestock keeping without large capital investments. This, combined with a growing demand for pork, especially in urban areas, has led to an increase in the number of small-holder farmers keeping free range pigs as a commercial enterprise. Despite the benefits which pig production can bring to a household, keeping pigs under a free range system increases the risk of the pig acquiring diseases, either production-limiting or zoonotic in nature. This study used Global Positioning System (GPS) technology to track free range domestic pigs in rural western Kenya, in order to understand their movement patterns and interactions with elements of the peri-domestic environment. Results We found that these pigs travel an average of 4,340 m in a 12 hr period and had a mean home range of 10,343 m2 (range 2,937–32,759 m2) within which the core utilisation distribution was found to be 964 m2 (range 246–3,289 m2) with pigs spending on average 47% of their time outside their homestead of origin. Conclusion These are the first data available on the home range of domestic pigs kept under a free range system: the data show that pigs in these systems spend much of their time scavenging outside their homesteads, suggesting that these pigs may be exposed to infectious agents over a wide area. Control policies for diseases such as Taenia solium, Trypanosomiasis, Trichinellosis, Toxoplasmosis or African Swine Fever therefore require a community-wide focus and pig farmers require education on the inherent risks of keeping pigs under a free range system. The work presented here will enable future research to incorporate movement data into studies of disease transmission, for example for the understanding of transmission of African Swine Fever between individuals, or in relation to the life-cycle of parasites including Taenia solium

    The Ha luminosity function and star formation rate up to z~1

    Full text link
    We describe ISAAC/ESO-VLT observations of the Ha(6563) Balmer line of 33 field galaxies from the Canada-France Redshift Survey (CFRS) with redshifts selected between 0.5 and 1.1. We detect Ha in emission in 30 galaxies and compare the properties of this sample with the low-redshift sample of CFRS galaxies at z~0.2 (Tresse & Maddox 1998). We find that the Ha luminosity, L(Ha), is tightly correlated to M(B(AB)) in the same way for both the low- and high-redshift samples. L(Ha) is also correlated to L([OII]3727), and again the relation appears to be similar at low and high redshifts. The ratio L([OII])/L(Ha) decreases for brighter galaxies by as much as a factor 2 on average. Derived from the Ha luminosity function, the comoving Ha luminosity density increases by a factor 12 from =0.2 to =1.3. Our results confirm a strong rise of the star formation rate (SFR) at z<1.3, proportional to (1+z)^{4.1+/-0.3} (with H_0=50 km/s/Mpc, q_0=0.5). We find an average SFR(2800 Ang)/SFR(Ha) ratio of 3.2 using the Kennicutt (1998) SFR transformations. This corresponds to the dust correction that is required to make the near UV data consistent with the reddening-corrected Ha data within the self-contained, I-selected CFRS sample.Comment: 16 pages, 16 figures and 3 tables included, figures and text updated, same results as in the 1st version, accepted in MNRA

    The CANADA-FRANCE REDSHIFT SURVEY XIII: The luminosity density and star-formation history of the Universe to z ~ 1

    Full text link
    The comoving luminosity density of the Universe is estimated from the CFRS faint galaxy sample in three wavebands (2800A, 4400A and 1 micron) over the redshift range 0 < z < 1. In all three wavebands, the comoving luminosity density increases markedly with redshift. For a (q_0 = 0.5, Omega = 1.0) cosmological model, the comoving luminosity density increases as (1+z)2.1±0.5(1+z)^{2.1 \pm 0.5} at 1 micron, as (1+z)2.7±0.5(1+z)^{2.7 \pm 0.5} at 4400A and as (1+z)3.9±0.75(1+z)^{3.9 \pm 0.75} at 2800A, these exponents being reduced by 0.43 and 1.12 for (0.05,0.1) and (-0.85,0.1) cosmological models respectively. The variation of the luminosity density with epoch can be reasonably well modelled by an actively evolving stellar population with a Salpeter initial mass function (IMF) extending to 125 M_sun, a star-formation rate declining with a power 2.5, and a turn-on of star-formation at early epochs. A Scalo (1986) IMF extending to the same mass limit produces too many long-lived low mass stars. This rapid evolution of the star-formation rate and comoving luminosity density of the Universe is in good agreement with the conclusions of Pei and Fall (1995) from their analysis of the evolving metallicity of the Universe. One consequence of this evolution is that the physical luminosity density at short wavelengths has probably declined by two orders of magnitude since z ~ 1.Comment: uuencoded compressed tar file containing 8 page Tex file, 2 postscript figures and 2 tables. Ap J Letters, in press. Also available at http://www.astro.utoronto.ca/~lilly/CFRS/papers.htm

    EZ: A Tool for Automatic Redshift Measurement

    Full text link
    We present EZ (Easy redshift), a tool we have developed within the VVDS project to help in redshift measurement from otpical spectra. EZ has been designed with large spectroscopic surveys in mind, and in its development particular care has been given to the reliability of the results obtained in an automatic and unsupervised mode. Nevertheless, the possibility of running it interactively has been preserved, and a graphical user interface for results inspection has been designed. EZ has been successfully used within the VVDS project, as well as the zCosmos one. In this paper we describe its architecture and the algorithms used, and evaluate its performances both on simulated and real data. EZ is an open source program, freely downloadable from http://cosmos.iasf-milano.inaf.it/pandora.Comment: accepted for publication in Publications of the Astronomical Society of the Pacifi

    Panchromatic properties of galaxies in wide-field optical spectroscopic and photometric surveys

    Full text link
    The past 15 years have seen an explosion in the number of redshifts recovered via wide area spectroscopic surveys. At the current time there are approximately 2million spectroscopic galaxy redshifts known (and rising) which represents an extraordinary growth since the pioneering work of Marc Davis and John Huchra. Similarly there has been a parallel explosion in wavelength coverage with imaging surveys progressing from single band, to multi-band, to truly multiwavelength or pan-chromatic involving the coordination of multiple facilities. With these empirically motivated studies has come a wealth of new discoveries impacting almost all areas of astrophysics. Today individual surveys, as best demonstrated by the Sloan Digital Sky Survey, now rank shoulder-to-shoulder alongside major facilities. In the coming years this trend is set to continue as we being the process of designing and conducting the next generation of spectroscopic surveys supported by multi-facility wavelength coverage.Comment: Invited review article to be published in Proceedings of IAU Symposium 284 on "The Spectral Energy Distribution of Galaxies", (Eds: R.J.Tuffs & C.C.Popescu

    Multifragmentation and the liquid-gas phase transition: an experimental overview

    Full text link
    Two roads are presently being followed in order to establish the existence of a liquid-gas phase transition in finite nuclear systems from nuclear reactions at high energy. The clean experiment of observing the thermodynamic properties of a finite number of nucleons in a container is presently only possible with the computer. Performed with advanced nuclear transport models, it has revealed the first-order character of the transition and allowed the extraction of the pertinent thermodynamic parameters. The validity of the applied theory is being confirmed by comparing its predictions for heavy-ion reactions with exclusive experiments. The second approach is experimentally more direct. Signals of the transition are searched for by analysing reaction data within the framework of thermodynamics of small systems. A variety of potential signals has been investigated and found to be qualitatively consistent with the expectations for the phase transition. Many of them are well reproduced with percolation models which places the nuclear fragmentation into the more general context of partitioning phenomena in finite systems. A wealth of new data on this subject has been obtained in recent experiments, some of them with a new generation of multi-detector devices aiming at higher resolutions, isotopic identification of the fragments, and the coincident detection of neutrons. Isotopic effects in multifragmentation were addressed quite intensively, with particular attention being given to their relation to the symmetry energy and its dependence on density.Comment: 10 pages, 7 figures, Contribution to Proceedings of INPC2004, Goeteborg, Sweden, June 27 - July 2, 200
    corecore