77 research outputs found

    The frequency of anti-infliximab antibodies in patients with rheumatoid arthritis treated in routine care and the associations with adverse drug reactions and treatment failure

    Get PDF
    Objectives. To investigate the frequency of anti-infliximab antibodies in patients with RA and the associations with adverse drug reactions and treatment failure. Methods. Based on the DANBIO registry, patients with RA who initiated treatment with infliximab at Hvidovre Hospital between 2000 and 2008 and had available serum samples were identified. The patients were followed for 52 weeks. Anti-infliximab antibodies were determined prior to infusion at baseline and during follow-up (weeks 2, 6, 14 and 52 or at withdrawal) using the IMPACT indirect assay (Roche Diagnostics) and merged with clinical data prospectively registered in the DANBIO registry. Results. A total of 218 patients with RA were included (80% females, median age 56 years, disease duration 10 years, 65% RF positive, median DAS28 = 5.0). During the 52-week follow-up, 28 patients (13%) withdrew due to adverse events and 50 (23%) due to treatment failure. Antibodies were detected in 118 patients (54%) during follow-up. Patients with detectable anti-infliximab antibodies after 6 weeks had an increased risk of adverse drug reactions [hazard ratio (HR) = 5.06, 95% CI 2.36, 10.84; P < 0.0001] compared with patients without anti-infliximab antibodies. Similar results were observed in patients with anti-infliximab antibodies after 14 weeks (HR = 3.30, 95% CI 1.56, 6.99; P = 0.0009). Patients with detectable anti-infliximab antibodies during the 52-week follow-up were less likely to achieve sustained minimal disease activity and remission. Conclusion. Early anti-infliximab antibody formation increased the risk of adverse drug reactions, including infusion reactions. Anti-infliximab antibody formation during the 52-week follow-up decreased the likelihood of minimal disease activity and remission in patients with RA treated in routine car

    CD6 and Syntaxin Binding Protein 6 Variants and Response to Tumor Necrosis Factor Alpha Inhibitors in Danish Patients with Rheumatoid Arthritis

    Get PDF
    <div><h3>Background</h3><p>TNFα inhibitor therapy has greatly improved the treatment of patients with rheumatoid arthritis, however at least 30% do not respond. We aimed to investigate insertions and deletions (INDELS) associated with response to TNFα inhibitors in patients with rheumatoid arthritis (RA).</p> <h3>Methodology and Principal Findings</h3><p>In the DANBIO Registry we identified 237 TNFα inhibitor naïve patients with RA (81% women; median age 56 years; disease duration 6 years) who initiated treatment with infliximab (n = 160), adalimumab (n = 56) or etanercept (n = 21) between 1999 and 2008 according to national treatment guidelines. Clinical response was assessed at week 26 using EULAR response criteria. Based on literature, we selected 213 INDELS potentially related to RA and treatment response using the GeneVa® (Compugen) <em>in silico</em> database of 350,000 genetic variations in the human genome. Genomic segments were amplified by polymerase chain reaction (PCR), and genotyped by Sanger sequencing or fragment analysis. We tested the association between genotypes and EULAR good response versus no response, and EULAR good response versus moderate/no response using Fisher’s exact test. At baseline the median DAS28 was 5.1. At week 26, 68 (29%) patients were EULAR good responders, while 81 (34%) and 88 (37%) patients were moderate and non-responders, respectively. A 19 base pair insertion within the CD6 gene was associated with EULAR good response vs. no response (OR = 4.43, 95% CI: 1.99–10.09, p = 7.211×10<sup>−5</sup>) and with EULAR good response vs. moderate/no response (OR = 4.54, 95% CI: 2.29–8.99, p = 3.336×10<sup>−6</sup>). A microsatellite within the syntaxin binding protein 6 (STXBP6) was associated with EULAR good response vs. no response (OR = 4.01, 95% CI: 1.92–8.49, p = 5.067×10<sup>−5</sup>).</p> <h3>Conclusion</h3><p>Genetic variations within CD6 and STXBP6 may influence response to TNFα inhibitors in patients with RA.</p> </div

    A correction for sample overlap in genome-wide association studies in a polygenic pleiotropy-informed framework.

    Get PDF
    BACKGROUND: There is considerable evidence that many complex traits have a partially shared genetic basis, termed pleiotropy. It is therefore useful to consider integrating genome-wide association study (GWAS) data across several traits, usually at the summary statistic level. A major practical challenge arises when these GWAS have overlapping subjects. This is particularly an issue when estimating pleiotropy using methods that condition the significance of one trait on the signficance of a second, such as the covariate-modulated false discovery rate (cmfdr). RESULTS: We propose a method for correcting for sample overlap at the summary statistic level. We quantify the expected amount of spurious correlation between the summary statistics from two GWAS due to sample overlap, and use this estimated correlation in a simple linear correction that adjusts the joint distribution of test statistics from the two GWAS. The correction is appropriate for GWAS with case-control or quantitative outcomes. Our simulations and data example show that without correcting for sample overlap, the cmfdr is not properly controlled, leading to an excessive number of false discoveries and an excessive false discovery proportion. Our correction for sample overlap is effective in that it restores proper control of the false discovery rate, at very little loss in power. CONCLUSIONS: With our proposed correction, it is possible to integrate GWAS summary statistics with overlapping samples in a statistical framework that is dependent on the joint distribution of the two GWAS

    Using brain cell-type-specific protein interactomes to interpret neurodevelopmental genetic signals in schizophrenia

    Get PDF
    Genetics have nominated many schizophrenia risk genes and identified convergent signals between schizophrenia and neurodevelopmental disorders. However, functional interpretation of the nominated genes in the relevant brain cell types is often lacking. We executed interaction proteomics for six schizophrenia risk genes that have also been implicated in neurodevelopment in human induced cortical neurons. The resulting protein network is enriched for common variant risk of schizophrenia in Europeans and East Asians, is down-regulated in layer 5/6 cortical neurons of individuals affected by schizophrenia, and can complement fine-mapping and eQTL data to prioritize additional genes in GWAS loci. A sub-network centered on HCN1 is enriched for common variant risk and contains proteins (HCN4 and AKAP11) enriched for rare protein-truncating mutations in individuals with schizophrenia and bipolar disorder. Our findings showcase brain cell-type-specific interactomes as an organizing framework to facilitate interpretation of genetic and transcriptomic data in schizophrenia and its related disorders

    Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects

    Get PDF
    Copy number variants (CNVs) have been strongly implicated in the genetic etiology of schizophrenia (SCZ). However, genome-wide investigation of the contribution of CNV to risk has been hampered by limited sample sizes. We sought to address this obstacle by applying a centralized analysis pipeline to a SCZ cohort of 21,094 cases and 20,227 controls. A global enrichment of CNV burden was observed in cases (OR=1.11, P=5.7×10−15), which persisted after excluding loci implicated in previous studies (OR=1.07, P=1.7 ×10−6). CNV burden was enriched for genes associated with synaptic function (OR = 1.68, P = 2.8 ×10−11) and neurobehavioral phenotypes in mouse (OR = 1.18, P= 7.3 ×10−5). Genome-wide significant evidence was obtained for eight loci, including 1q21.1, 2p16.3 (NRXN1), 3q29, 7q11.2, 15q13.3, distal 16p11.2, proximal 16p11.2 and 22q11.2. Suggestive support was found for eight additional candidate susceptibility and protective loci, which consisted predominantly of CNVs mediated by non-allelic homologous recombination

    Modeling linkage disequilibrium increases accuracy of polygenic risk scores

    Get PDF

    No Reliable Association between Runs of Homozygosity and Schizophrenia in a Well-Powered Replication Study

    Get PDF
    It is well known that inbreeding increases the risk of recessive monogenic diseases, but it is less certain whether it contributes to the etiology of complex diseases such as schizophrenia. One way to estimate the effects of inbreeding is to examine the association between disease diagnosis and genome-wide autozygosity estimated using runs of homozygosity (ROH) in genome-wide single nucleotide polymorphism arrays. Using data for schizophrenia from the Psychiatric Genomics Consortium (n = 21,868), Keller et al. (2012) estimated that the odds of developing schizophrenia increased by approximately 17% for every additional percent of the genome that is autozygous (β = 16.1, CI(β) = [6.93, 25.7], Z = 3.44, p = 0.0006). Here we describe replication results from 22 independent schizophrenia case-control datasets from the Psychiatric Genomics Consortium (n = 39,830). Using the same ROH calling thresholds and procedures as Keller et al. (2012), we were unable to replicate the significant association between ROH burden and schizophrenia in the independent PGC phase II data, although the effect was in the predicted direction, and the combined (original + replication) dataset yielded an attenuated but significant relationship between Froh and schizophrenia (β = 4.86,CI(β) = [0.90,8.83],Z = 2.40,p = 0.02). Since Keller et al. (2012), several studies reported inconsistent association of ROH burden with complex traits, particularly in case-control data. These conflicting results might suggest that the effects of autozygosity are confounded by various factors, such as socioeconomic status, education, urbanicity, and religiosity, which may be associated with both real inbreeding and the outcome measures of interest

    Age at first birth in women is genetically associated with increased risk of schizophrenia

    Get PDF
    Prof. Paunio on PGC:n jäsenPrevious studies have shown an increased risk for mental health problems in children born to both younger and older parents compared to children of average-aged parents. We previously used a novel design to reveal a latent mechanism of genetic association between schizophrenia and age at first birth in women (AFB). Here, we use independent data from the UK Biobank (N = 38,892) to replicate the finding of an association between predicted genetic risk of schizophrenia and AFB in women, and to estimate the genetic correlation between schizophrenia and AFB in women stratified into younger and older groups. We find evidence for an association between predicted genetic risk of schizophrenia and AFB in women (P-value = 1.12E-05), and we show genetic heterogeneity between younger and older AFB groups (P-value = 3.45E-03). The genetic correlation between schizophrenia and AFB in the younger AFB group is -0.16 (SE = 0.04) while that between schizophrenia and AFB in the older AFB group is 0.14 (SE = 0.08). Our results suggest that early, and perhaps also late, age at first birth in women is associated with increased genetic risk for schizophrenia in the UK Biobank sample. These findings contribute new insights into factors contributing to the complex bio-social risk architecture underpinning the association between parental age and offspring mental health.Peer reviewe

    Genetic correlation between amyotrophic lateral sclerosis and schizophrenia

    Get PDF
    A. Palotie on työryhmän Schizophrenia Working Grp Psychiat jäsen.We have previously shown higher-than-expected rates of schizophrenia in relatives of patients with amyotrophic lateral sclerosis (ALS), suggesting an aetiological relationship between the diseases. Here, we investigate the genetic relationship between ALS and schizophrenia using genome-wide association study data from over 100,000 unique individuals. Using linkage disequilibrium score regression, we estimate the genetic correlation between ALS and schizophrenia to be 14.3% (7.05-21.6; P = 1 x 10(-4)) with schizophrenia polygenic risk scores explaining up to 0.12% of the variance in ALS (P = 8.4 x 10(-7)). A modest increase in comorbidity of ALS and schizophrenia is expected given these findings (odds ratio 1.08-1.26) but this would require very large studies to observe epidemiologically. We identify five potential novel ALS-associated loci using conditional false discovery rate analysis. It is likely that shared neurobiological mechanisms between these two disorders will engender novel hypotheses in future preclinical and clinical studies.Peer reviewe

    Schizophrenia risk from complex variation of complement component 4

    Get PDF
    Schizophrenia is a heritable brain illness with unknown pathogenic mechanisms. Schizophrenia's strongest genetic association at a population level involves variation in the major histocompatibility complex (MHC) locus, but the genes and molecular mechanisms accounting for this have been challenging to identify. Here we show that this association arises in part from many structurally diverse alleles of the complement component 4 (C4) genes. We found that these alleles generated widely varying levels of C4A and C4B expression in the brain, with each common C4 allele associating with schizophrenia in proportion to its tendency to generate greater expression of C4A. Human C4 protein localized to neuronal synapses, dendrites, axons, and cell bodies. In mice, C4 mediated synapse elimination during postnatal development. These results implicate excessive complement activity in the development of schizophrenia and may help explain the reduced numbers of synapses in the brains of individuals with schizophrenia.This work was supported by R01 HG 006855 (to S.A.M), by the Stanley Center for Psychiatric Research (to S.A.M and B.S.), by R01 MH077139 (to the PGC), and by T32 GM007753 (to A.S. and M.B.)
    corecore