49 research outputs found

    Morbidity and mortality after robot-assisted radical cystectomy with intracorporeal urinary diversion in octogenarians: results from the European Association of Urology Robotic Urology Section Scientific Working Group

    Get PDF
    OBJECTIVES: To evaluate the postoperative complication and mortality rate following laparoscopic radical cystectomy (RARC) with intracorporeal urinary diversion (ICUD) in octogenarians. PATIENTS AND METHODS: We conducted a retrospective analysis comparing postoperative complication and mortality rates depending on age in a consecutive series of 1890 patients who underwent RARC with ICUD for bladder cancer between 2004 and 2018 in 10 European centres. Outcomes of patients aged <80 years and those aged ≥80 years were compared with regard to postoperative complications (Clavien–Dindo grading) and mortality rate. Cancer-specific mortality (CSM) and other-cause mortality (OCM) after surgery were calculated using the non-parametric Aalen-Johansen estimator. RESULTS: A total of 1726 patients aged <80 years and 164 aged ≥80 years were included in the analysis. The 30- and 90-day rate for high-grade (Clavien–Dindo grades III–V) complications were 15% and 21% for patients aged <80 years compared to 11% and 13% for patients aged ≥80 years (P = 0.2 and P = 0.03), respectively. In a multivariable logistic regression analysis adjusting for pre- and postoperative variables, age ≥80 years was not an independent predictor of high-grade complications (odds ratio 0.6, 95% confidence interval 0.3–1.1; P = 0.12). The non-cancer-related 90-day mortality was 2.3% for patients aged ≥80 years and 1.8% for those aged <80 years, respectively (P = 0.7). The estimated 12-month CSM and OCM rates for those aged <80 years were 8% and 3%, and for those aged ≥80 years, 15% and 8%, respectively (P = 0.009 and P < 0.001). CONCLUSIONS: The minimally invasive approach to RARC with ICUD for bladder cancer in well-selected elderly patients (aged ≥80 years) achieved a tolerable high-grade complication rate; the 90-day postoperative mortality rate was driven by cancer progression and the non-cancer-related rate was equivalent to that of patients aged <80 years. However, an increased OCM rate in this elderly group after the first year should be taken into account. These results will support clinicians and patients when balancing cancer-related vs treatment-related risks and benefits

    Discovery pipeline for epigenetically deregulated miRNAs in cancer: integration of primary miRNA transcription

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cancer is commonly associated with widespread disruption of DNA methylation, chromatin modification and miRNA expression. In this study, we established a robust discovery pipeline to identify epigenetically deregulated miRNAs in cancer.</p> <p>Results</p> <p>Using an integrative approach that combines primary transcription, genome-wide DNA methylation and H3K9Ac marks with microRNA (miRNA) expression, we identified miRNA genes that were epigenetically modified in cancer. We find miR-205, miR-21, and miR-196b to be epigenetically repressed, and miR-615 epigenetically activated in prostate cancer cells.</p> <p>Conclusions</p> <p>We show that detecting changes in primary miRNA transcription levels is a valuable method for detection of local epigenetic modifications that are associated with changes in mature miRNA expression.</p

    Management of patients who opt for radical prostatectomy during the COVID‐19 pandemic: An International Accelerated Consensus Statement

    Get PDF
    BACKGROUND: Coronavirus disease-19 (COVID-19) pandemic caused delays in definitive treatment of patients with prostate cancer. Beyond the immediate delay a backlog for future patients is expected. Such delays can lead to disease progression. OBJECTIVE: We aimed to develop guidance on criteria for prioritization for surgery and reconfiguring management pathways for non-metastatic stage of prostate cancer who opt for surgical treatment. A second aim was to identify the infection prevention and control (IPC) measures to achieve low likelihood of COVID-19 hazard if radical prostatectomy was to be carried out during the outbreak and whilst the disease is endemic. DESIGN, SETTING AND PARTICIPANTS: An accelerated consensus process and systematic review. We conducted a systematic review of the evidence on COVID-19 and reviewed international guidance on prostate cancer. These were presented to an international prostate cancer expert panel (n=34) through an online meeting. The consensus process underwent three rounds of survey in total. Additions to the second- and third-round surveys were formulated based on the answers and comments from the previous rounds. OUTCOME MEASURES: Consensus opinion was defined as ≥80% agreement, which were used to reconfigure the prostate cancer pathways. RESULTS: Evidence on the delayed management of patients with prostate cancer is scarce. There was 100% agreement that prostate cancer pathways should be reconfigured and develop measures to prevent nosocomial COVID-19 for patients treated surgically. Consensus was reached on prioritization criteria of patients for surgery and management pathways for those who have delayed treatment. IPC measures to achieve a low likelihood of nosocomial COVID-19 were coined as "COVID-19 cold sites". CONCLUSION: Re-configuring management pathways for prostate cancer patients is recommended if significant delay (>3-6 months) in surgical management is unavoidable. The mapped pathways provide guidance for such patients. The IPC processes proposed provide a framework for providing radical prostatectomy within an environment with low COVID-19 risk during the outbreak or when the disease remains endemic. The broader concepts could be adapted to other indications beyond prostate cancer surgery

    Benthic megafauna of the western Clarion-Clipperton Zone, Pacific Ocean

    Get PDF
    There is a growing interest in the exploitation of deep-sea mineral deposits, particularly on the abyssal seafloor of the central Pacific Clarion-Clipperton Zone (CCZ), which is rich in polymetallic nodules. In order to effectively manage potential exploitation activities, a thorough understanding of the biodiversity, community structure, species ranges, connectivity, and ecosystem functions across a range of scales is needed. The benthic megafauna plays an important role in the functioning of deep-sea ecosystems and represents an important component of the biodiversity. While megafaunal surveys using video and still images have provided insight into CCZ biodiversity, the collection of faunal samples is needed to confirm species identifications to accurately estimate species richness and species ranges, but faunal collections are very rarely carried out. Using a Remotely Operated Vehicle, 55 specimens of benthic megafauna were collected from seamounts and abyssal plains in three Areas of Particular Environmental Interest (APEI 1, APEI 4, and APEI 7) at 3100–5100 m depth in the western CCZ. Using both morphological and molecular evidence, 48 different morphotypes belonging to five phyla were found, only nine referrable to known species, and 39 species potentially new to science. This work highlights the need for detailed taxonomic studies incorporating genetic data, not only within the CCZ, but in other bathyal, abyssal, and hadal regions, as representative genetic reference libraries that could facilitate the generation of species inventories

    Hundreds of variants clustered in genomic loci and biological pathways affect human height

    Get PDF
    Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.

    MicroRNA Alterations and Associated Aberrant DNA Methylation Patterns across Multiple Sample Types in Oral Squamous Cell Carcinoma

    Get PDF
    Background: MicroRNA (miRNA) expression is broadly altered in cancer, but few studies have investigated miRNA deregulation in oral squamous cell carcinoma (OSCC). Epigenetic mechanisms are involved in the regulation of .30 miRNA genes in a range of tissues, and we aimed to investigate this further in OSCC. Methods: TaqManH qRT-PCR arrays and individual assays were used to profile miRNA expression in a panel of 25 tumors with matched adjacent tissues from patients with OSCC, and 8 control paired oral stroma and epithelium from healthy volunteers. Associated DNA methylation changes of candidate epigenetically deregulated miRNA genes were measured in the same samples using the MassArrayH mass spectrometry platform. MiRNA expression and DNA methylation changes were also investigated in FACS sorted CD44high oral cancer stem cells from primary tumor samples (CSCs), and in oral rinse and saliva from 15 OSCC patients and 7 healthy volunteers. Results: MiRNA expression patterns were consistent in healthy oral epithelium and stroma, but broadly altered in both tumor and adjacent tissue from OSCC patients. MiR-375 is repressed and miR-127 activated in OSCC, and we confirm previous reports of miR-137 hypermethylation in oral cancer. The miR-200 s/miR-205 were epigenetically activated in tumors vs normal tissues, but repressed in the absence of DNA hypermethylation specifically in CD44high oral CSCs. Aberrant miR-375 and miR-200a expression and miR-200c-141 methylation could be detected in and distinguish OSCC patient oral rinse and saliva from healthy volunteers, suggesting a potential clinical application for OSCC specific miRNA signatures in oral fluids. Conclusions: MiRNA expression and DNA methylation changes are a common event in OSCC, and we suggest miR-375, miR- 127, miR-137, the miR-200 family and miR-205 as promising candidates for future investigations. Although overall activated in OSCC, miR-200/miR-205 suppression in oral CSCs indicate that cell specific silencing of these miRNAs may drive tumor expansion and progression

    Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans

    Get PDF
    Genome-wide association studies (GWAS) have identified numerous common prostate cancer (PrCa) susceptibility loci. We have fine-mapped 64 GWAS regions known at the conclusion of the iCOGS study using large-scale genotyping and imputation in 25 723 PrCa cases and 26 274 controls of European ancestry. We detected evidence for multiple independent signals at 16 regions, 12 of which contained additional newly identified significant associations. A single signal comprising a spectrum of correlated variation was observed at 39 regions; 35 of which are now described by a novel more significantly associated lead SNP, while the originally reported variant remained as the lead SNP only in 4 regions. We also confirmed two association signals in Europeans that had been previously reported only in East-Asian GWAS. Based on statistical evidence and linkage disequilibrium (LD) structure, we have curated and narrowed down the list of the most likely candidate causal variants for each region. Functional annotation using data from ENCODE filtered for PrCa cell lines and eQTL analysis demonstrated significant enrichment for overlap with bio-features within this set. By incorporating the novel risk variants identified here alongside the refined data for existing association signals, we estimate that these loci now explain ∼38.9% of the familial relative risk of PrCa, an 8.9% improvement over the previously reported GWAS tag SNPs. This suggests that a significant fraction of the heritability of PrCa may have been hidden during the discovery phase of GWAS, in particular due to the presence of multiple independent signals within the same regio

    Germline variation at 8q24 and prostate cancer risk in men of European ancestry

    Get PDF
    Chromosome 8q24 is a susceptibility locus for multiple cancers, including prostate cancer. Here we combine genetic data across the 8q24 susceptibility region from 71,535 prostate cancer cases and 52,935 controls of European ancestry to define the overall contribution of germline variation at 8q24 to prostate cancer risk. We identify 12 independent risk signals for prostate cancer (p < 4.28 × 10−15), including three risk variants that have yet to be reported. From a polygenic risk score (PRS) model, derived to assess the cumulative effect of risk variants at 8q24, men in the top 1% of the PRS have a 4-fold (95%CI = 3.62–4.40) greater risk compared to the population average. These 12 variants account for ~25% of what can be currently explained of the familial risk of prostate cancer by known genetic risk factors. These findings highlight the overwhelming contribution of germline variation at 8q24 on prostate cancer risk which has implications for population risk stratification

    Fine-mapping of prostate cancer susceptibility loci in a large meta-analysis identifies candidate causal variants

    Get PDF
    Prostate cancer is a polygenic disease with a large heritable component. A number of common, low-penetrance prostate cancer risk loci have been identified through GWAS. Here we apply the Bayesian multivariate variable selection algorithm JAM to fine-map 84 prostate cancer susceptibility loci, using summary data from a large European ancestry meta-analysis. We observe evidence for multiple independent signals at 12 regions and 99 risk signals overall. Only 15 original GWAS tag SNPs remain among the catalogue of candidate variants identified; the remainder are replaced by more likely candidates. Biological annotation of our credible set of variants indicates significant enrichment within promoter and enhancer elements, and transcription factor-binding sites, including AR, ERG and FOXA1. In 40 regions at least one variant is colocalised with an eQTL in prostate cancer tissue. The refined set of candidate variants substantially increase the proportion of familial relative risk explained by these known susceptibility regions, which highlights the importance of fine-mapping studies and has implications for clinical risk profiling. © 2018 The Author(s).Prostate cancer is a polygenic disease with a large heritable component. A number of common, low-penetrance prostate cancer risk loci have been identified through GWAS. Here we apply the Bayesian multivariate variable selection algorithm JAM to fine-map 84 prostate cancer susceptibility loci, using summary data from a large European ancestry meta-analysis. We observe evidence for multiple independent signals at 12 regions and 99 risk signals overall. Only 15 original GWAS tag SNPs remain among the catalogue of candidate variants identified; the remainder are replaced by more likely candidates. Biological annotation of our credible set of variants indicates significant enrichment within promoter and enhancer elements, and transcription factor-binding sites, including AR, ERG and FOXA1. In 40 regions at least one variant is colocalised with an eQTL in prostate cancer tissue. The refined set of candidate variants substantially increase the proportion of familial relative risk explained by these known susceptibility regions, which highlights the importance of fine-mapping studies and has implications for clinical risk profiling. © 2018 The Author(s).Peer reviewe
    corecore