55 research outputs found

    Larval Rearing Temperature Influences Amount and Composition of the Marking Pheromone of the Male Beewolf, Philanthus triangulum

    Get PDF
    Pheromones play an important role for courtship and mating in many insect species, and they are shaped by a complex interaction of genetic and environmental factors. Developmental temperature is known to have a strong influence on adult life history, morphology, and physiology, but little is known about its effect on pheromone characteristics. In the present study, the influence of temperature during larval development on the amount and composition of the complex marking pheromone from the cephalic glands of the adult male beewolf, Philanthus triangulum F. (Hymenoptera: Crabronidae), was investigated. Additionally, the effects of temperature on several life-history traits were examined. European beewolf larvae were reared at three constant temperatures (20, 25, and 30° C). Males reared at 20° C showed longer development times and higher mortality, suggesting that low temperatures constitute stressful conditions for developing larvae. After eclosion, the amount and composition of the scent marking secretion of the adult males was analyzed by coupled gas chromatography-mass spectrometry. Males that had been reared at 20° C had significantly less secretion than individuals reared under warmer conditions (25° C and 30° C). Furthermore, larval rearing temperature had a significant effect on the composition of the adult males' pheromone gland content, with warmer rearing conditions leading to higher relative amounts of compounds with high molecular weight. The results show that the temperature during larval development significantly affected the amount and composition of the content of the male pheromone glands, probably due to physiological constraints and competing processes for limited energetic resources. Thus, the pheromone gland content may contain information on developmental conditions of males, which may have consequences for female mate choice decisions and male reproductive success

    Spinor Bose-Einstein condensates

    Full text link
    An overview on the physics of spinor and dipolar Bose-Einstein condensates (BECs) is given. Mean-field ground states, Bogoliubov spectra, and many-body ground and excited states of spinor BECs are discussed. Properties of spin-polarized dipolar BECs and those of spinor-dipolar BECs are reviewed. Some of the unique features of the vortices in spinor BECs such as fractional vortices and non-Abelian vortices are delineated. The symmetry of the order parameter is classified using group theory, and various topological excitations are investigated based on homotopy theory. Some of the more recent developments in a spinor BEC are discussed.Comment: To appear in Physics Reports. The PDF file with high resolution figures is available from the following website: http://cat.phys.s.u-tokyo.ac.jp/publication/review_of_spinorBEC.pd

    Vortices in multicomponent Bose-Einstein condensates

    Full text link
    We review the topic of quantized vortices in multicomponent Bose-Einstein condensates of dilute atomic gases, with an emphasis on that in two-component condensates. First, we review the fundamental structure, stability and dynamics of a single vortex state in a slowly rotating two-component condensates. To understand recent experimental results, we use the coupled Gross-Pitaevskii equations and the generalized nonlinear sigma model. An axisymmetric vortex state, which was observed by the JILA group, can be regarded as a topologically trivial skyrmion in the pseudospin representation. The internal, coherent coupling between the two components breaks the axisymmetry of the vortex state, resulting in a stable vortex molecule (a meron pair). We also mention unconventional vortex states and monopole excitations in a spin-1 Bose-Einstein condensate. Next, we discuss a rich variety of vortex states realized in rapidly rotating two-component Bose-Einstein condensates. We introduce a phase diagram with axes of rotation frequency and the intercomponent coupling strength. This phase diagram reveals unconventional vortex states such as a square lattice, a double-core lattice, vortex stripes and vortex sheets, all of which are in an experimentally accessible parameter regime. The coherent coupling leads to an effective attractive interaction between two components, providing not only a promising candidate to tune the intercomponent interaction to study the rich vortex phases but also a new regime to explore vortex states consisting of vortex molecules characterized by anisotropic vorticity. A recent experiment by the JILA group vindicated the formation of a square vortex lattice in this system.Comment: 69 pages, 25 figures, Invited review article for International Journal of Modern Physics

    Commissioning of the vacuum system of the KATRIN Main Spectrometer

    Get PDF
    The KATRIN experiment will probe the neutrino mass by measuring the beta-electron energy spectrum near the endpoint of tritium beta-decay. An integral energy analysis will be performed by an electro-static spectrometer (Main Spectrometer), an ultra-high vacuum vessel with a length of 23.2 m, a volume of 1240 m^3, and a complex inner electrode system with about 120000 individual parts. The strong magnetic field that guides the beta-electrons is provided by super-conducting solenoids at both ends of the spectrometer. Its influence on turbo-molecular pumps and vacuum gauges had to be considered. A system consisting of 6 turbo-molecular pumps and 3 km of non-evaporable getter strips has been deployed and was tested during the commissioning of the spectrometer. In this paper the configuration, the commissioning with bake-out at 300{\deg}C, and the performance of this system are presented in detail. The vacuum system has to maintain a pressure in the 10^{-11} mbar range. It is demonstrated that the performance of the system is already close to these stringent functional requirements for the KATRIN experiment, which will start at the end of 2016.Comment: submitted for publication in JINST, 39 pages, 15 figure

    Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease

    Get PDF
    Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.

    Commissioning of the vacuum system of the KATRIN Main Spectrometer

    Get PDF
    The KATRIN experiment will probe the neutrino mass by measuring the -electron energy spectrum near the endpoint of tritium -decay. An integral energy analysis will be performed by an electro-static spectrometer (“Main Spectrometer”), an ultra-high vacuum vessel with a length of 23.2 m, a volume of 1240m3, and a complex inner electrode system with about 120 000 individual parts. The strong magnetic field that guides the -electrons is provided by super-conducting solenoids at both ends of the spectrometer. Its influence on turbo-molecular pumps and vacuum gauges had to be considered. A system consisting of 6 turbo-molecular pumps and 3 km of non-evaporable getter strips has been deployed and was tested during the commissioning of the spectrometer. In this paper the configuration, the commissioning with bake-out at 300 C, and the performance of this system are presented in detail. The vacuum system has to maintain a pressure in the 1011^{-11} mbar range. It is demonstrated that the performance of the system is already close to these stringent functional requirements for the KATRIN experiment, which will start at the end of 2016

    Science as a Self-Organizing Meta-Information System

    Get PDF
    Four basic problems that a theory of science has to deal with concern epistemology, structure, causality, and dynamics of science. These problems deal with the relationship of induction/deduction, actors/structures, internal/external factors, and continuity/discontinuity. Traditionally they have been solved one-sidedly. Considering science as a self-organizing system allows a more integrative approach. Science is a complex, nonlinear system that is made up of two moments: scientific actors and scientific structures. Scientific self-organization operates synchronously and diachronically. Synchronous scientific self-organization is a mutual production process between scientific actors and structures. Scientific systems are self-organizing units that perform the production of theories and truths by the way of a productive, circular causal duality of scientific actors and scientific structures. Science is a dynamic system where research practices produce and reproduce structures that produce and reproduce research practices. Scientific structures are medium and outcome of scientific actions. At the action level one can find a systemic hierarchy that is made up of individual researchers, research groups, scientific communities, and the overall scientific community. Scientific structures include theories, research institutions, technologies, journals, publications, science funds; norms, values, and rules of scientific conduct. The main scientific practices can be categorized as genuinely scientific practices (innovation, dissemination, scientific interchange, funding-related activities, teaching), cultural practices (public discourse), political practices (science policy), and economic practices (action related to scientific knowledge as commodities, patents, science-industry-partnerships, sponsorship). Science is an open system that is structurally coupled to other subsystems of society, it is neither internally, nor externally determined, its development is caused by a complex interplay of internal and external factors, it is a relatively autonomous system. Systems in nature and society act as a sort of data for the scientific system, research processes establish an informational relationship between the scientific system and its environment in the sense that theories are complex, non-linear reflections of environmental processes. Due to the fact that all complex systems are informational, one can say that science produces information about information systems. Science is a 2nd order information system, it produces meta-information. Philosophy of science is a science of science, it produces information about information about information, it is a 3rd order information system. The metaphor of science as a grand hypertext refers to the self-referential character of scientific texts. A scientific text by the way of citation refers to other scientific texts, it incorporates part of the history of science, and methodologically discusses other texts. The formation of scientific knowledge can be described as a double-process of induction and deduction, abstraction and concretization, where scientific knowledge consists of both empirical knowledge and theoretical knowledge and is formed in loop that consists of two self-organization processes. The self-organization of scientific knowledge is a mutually productive relationship between experience and theory. Scientific knowledge is a unity of experience and theory. The self-organization of scientific knowledge is a dialectical cycle where signals from material reality are transformed into experienced data that is interpreted and results in hypotheses and theories which are transformed into methods and technologies that are employed in order to cause effects in material reality that can again be observed as data. In this self-organization process there is the bottom-up-emergence of theoretical knowledge and the top-down-emergence of experiences and material effects. Each scientific theory is a truth claim, but one that is based on a systematic methodology, permanent evaluation and correction, and conflict-based discourse. Hence scientific truths are not absolute truths, they are truths-in-question, truths-in-discourse, and truths-in-conflict, and truths-in-development. One can distinguish formal, adequate, discursive, and practical truth of a theory. Due to the fact that the knowledge-based society is a high risk society, practical truth of science in the form of an ethically responsible science is of central importance. Diachronic self-organization of science means that dominant scientific paradigms at some point of time loose their effectiveness, paradoxes and instabilities show up, science enters crisis, a new dominant paradigm emerges. If a large gap between scientific theory and the problems posed for science by itself and by society emerges, the dominant structural patterns are increasingly questioned. This can have scientific or wider societal causes, or a combination of both. The resulting crisis is a process of creation and destruction. The whole process is one of the emergence of scientific order from noise. Variation is a permanent phenomenon of scientific evolution, but in phases of instability where the self-organization of science shifts from self-reproduction to order from noise the degree of variation and development by chance is much larger
    corecore