6 research outputs found
Chandra View of the Warm-hot Intergalactic Medium toward 1ES 1553+113: Absorption-line Detections and Identifications. I.
We present the first results from our pilot 500 ks Chandra Low Energy Transmission Grating Large Program observation of the soft X-ray brightest source in the z gsim 0.4 sky, the blazar 1ES 1553+113, aimed to secure the first uncontroversial detections of the missing baryons in the X-rays. We identify a total of 11 possible absorption lines, with single-line statistical significances between 2.2σ and 4.1σ. Six of these lines are detected at high single-line statistical significance (3.6 ≤ σ ≤ 4.1), while the remaining five are regarded as marginal detections in association with either other X-ray lines detected at higher significance and/or far-ultraviolet (FUV) signposts. Three of these lines are consistent with metal absorption at z sime 0, and we identify them with Galactic O I and C II. The remaining eight lines may be imprinted by intervening absorbers and are all consistent with being high-ionization counterparts of FUV H I and/or O VI intergalactic medium signposts. In particular, five of these eight possible intervening absorption lines (single-line statistical significances of 4.1σ, 4.1σ, 3.9σ, 3.8σ, and 2.7σ), are identified as C V and C VI Kα absorbers belonging to three WHIM systems at zX = 0.312, zX = 0.237, and langzX rang = 0.133, which also produce broad H I (and O VI for the zX = 0.312 system) absorption in the FUV. For two of these systems (zX = 0.312 and 0.237), the Chandra X-ray data led the a posteriori discovery of physically consistent broad H I associations in the FUV (for the third system the opposite applies), so confirming the power of the X-ray-FUV synergy for WHIM studies. The true statistical significances of these three X-ray absorption systems, after properly accounting for the number of redshift trials, are 5.8σ (zX = 0.312; 6.3σ if the low-significance O V and C V Kβ associations are considered), 3.9σ (zX = 0.237), and 3.8σ (langzX rang = 0.133), respectively
Modeling the cosmological co-evolution of supermassive black holes and galaxies: II. The clustering of quasars and their dark environment
We use semi-analytic modeling on top of the Millennium simulation to study
the joint formation of galaxies and their embedded supermassive black holes.
Our goal is to test scenarios in which black hole accretion and quasar
activity are triggered by galaxy mergers, and to constrain different models for
the lightcurves associated with individual quasar events. In the present work
we focus on studying the spatial distribution of simulated quasars. At all
luminosities, we find that the simulated quasar two-point correlation function
is fit well by a single power-law in the range 0.5 < r < 20 h^{-1} Mpc, but its
normalization is a strong function of redshift. When we select only quasars
with luminosities within the range typically accessible by today's quasar
surveys, their clustering strength depends only weakly on luminosity, in
agreement with observations. This holds independently of the assumed lightcurve
model, since bright quasars are black holes accreting close to the Eddington
limit, and are hosted by dark matter haloes with a narrow mass range of a few
10^12 h^{-1} M_sun. Therefore the clustering of bright quasars cannot be used
to disentangle lightcurve models, but such a discrimination would become
possible if the observational samples can be pushed to significantly fainter
limits.
Overall, our clustering results for the simulated quasar population agree
rather well with observations, lending support to the conjecture that galaxy
mergers could be the main physical process responsible for triggering black
hole accretion and quasar activity.Comment: 17 pages, 16 figures, to be published on MNRA
Two orthogonal differentiation gradients locally coordinate fruit morphogenesis
Abstract Morphogenesis requires the coordination of cellular behaviors along developmental axes. In plants, gradients of growth and differentiation are typically established along a single longitudinal primordium axis to control global organ shape. Yet, it remains unclear how these gradients are locally adjusted to regulate the formation of complex organs that consist of diverse tissue types. Here we combine quantitative live imaging at cellular resolution with genetics, and chemical treatments to understand the formation of Arabidopsis thaliana female reproductive organ (gynoecium). We show that, contrary to other aerial organs, gynoecium shape is determined by two orthogonal, time-shifted differentiation gradients. An early mediolateral gradient controls valve morphogenesis while a late, longitudinal gradient regulates style differentiation. Local, tissue-dependent action of these gradients serves to fine-tune the common developmental program governing organ morphogenesis to ensure the specialized function of the gynoecium
Detection of the Missing Baryons in a Warm-Hot Intergalactic Medium
It has been known for decades that the observed number of baryons in the local universe falls about 30-40% short of the total number of baryons predicted by Big-Bang Nucleosynthesis (e.g [3]), inferred by density fluctuations of the Cosmic Microwave Background (e.g. [4,5]) and seen during the first 2-3 billion years of the universe in the so called “Lyman-α Forest”. While theory provides a reasonable solution to this paradox, by locating the missing baryons in hot and tenuous filamentary gas connecting galaxies, it also sanctions the difficulty of detecting them because their by far largest constituent, hydrogen, is mostly ionized and therefore virtually invisible in ordinary signal-to-noise Far-Ultraviolet (FUV) spectra (e.g. [8,9]). Indeed, despite the large observational efforts, only a few marginal claims of detection have been made so far ([2,10] and references therein). Here we report observations of two highly ionized oxygen (OVII) intervening absorbers in the exceptionally high signal to noise X-ray spectrum of a quasar at redshift >0.4. These absorbers show no variability over a 2-year timescale and have no associated cold absorption, which makes their quasar’s intrinsic outflow or host galaxy interstellar medium (ISM) origins implausible. The OVII systems lie instead in regions characterized by large (×4 compared to average) galaxy over-densities, and their number (down to the sensitivity threshold of our data), agrees well with numerical simulation predictions for the long-sought warm-hot intergalactic medium (WHIM). We conclude that the missing baryons in the WHIM have been found.Instituto de Astrofísica de La Plat
Observations of the missing baryons in the warm-hot intergalactic medium
It has been known for decades that the observed number of baryons in the local Universe falls about 30-40 per cent short1,2 of the total number of baryons predicted3 by Big Bang nucleosynthesis, as inferred4,5 from density fluctuations of the cosmic microwave background and seen during the first 2-3 billion years of the Universe in the so-called `Lyman \u3b1 forest'6,7 (a dense series of intervening H i Lyman \u3b1 absorption lines in the optical spectra of background quasars). A theoretical solution to this paradox locates the missing baryons in the hot and tenuous filamentary gas between galaxies, known as the warm-hot intergalactic medium. However, it is difficult to detect them there because the largest by far constituent of this gas\u2014hydrogen\u2014is mostly ionized and therefore almost invisible in far-ultraviolet spectra with typical signal-to-noise ratios8,9. Indeed, despite large observational efforts, only a few marginal claims of detection have been made so far2,10. Here we report observations of two absorbers of highly ionized oxygen (O vii) in the high-signal-to-noise-ratio X-ray spectrum of a quasar at a redshift higher than 0.4. These absorbers show no variability over a two-year timescale and have no associated cold absorption, making the assumption that they originate from the quasar's intrinsic outflow or the host galaxy's interstellar medium implausible. The O vii systems lie in regions characterized by large (four times larger than average11) galaxy overdensities and their number (down to the sensitivity threshold of our data) agrees well with numerical simulation predictions for the long-sought warm-hot intergalactic medium. We conclude that the missing baryons have been found