We use semi-analytic modeling on top of the Millennium simulation to study
the joint formation of galaxies and their embedded supermassive black holes.
Our goal is to test scenarios in which black hole accretion and quasar
activity are triggered by galaxy mergers, and to constrain different models for
the lightcurves associated with individual quasar events. In the present work
we focus on studying the spatial distribution of simulated quasars. At all
luminosities, we find that the simulated quasar two-point correlation function
is fit well by a single power-law in the range 0.5 < r < 20 h^{-1} Mpc, but its
normalization is a strong function of redshift. When we select only quasars
with luminosities within the range typically accessible by today's quasar
surveys, their clustering strength depends only weakly on luminosity, in
agreement with observations. This holds independently of the assumed lightcurve
model, since bright quasars are black holes accreting close to the Eddington
limit, and are hosted by dark matter haloes with a narrow mass range of a few
10^12 h^{-1} M_sun. Therefore the clustering of bright quasars cannot be used
to disentangle lightcurve models, but such a discrimination would become
possible if the observational samples can be pushed to significantly fainter
limits.
Overall, our clustering results for the simulated quasar population agree
rather well with observations, lending support to the conjecture that galaxy
mergers could be the main physical process responsible for triggering black
hole accretion and quasar activity.Comment: 17 pages, 16 figures, to be published on MNRA