9 research outputs found

    Measurement of prompt open-charm production cross sections in proton-proton collisions at root s=13 TeV

    Get PDF
    The production cross sections for prompt open-charm mesons in proton-proton collisions at a center-of-mass energy of 13TeV are reported. The measurement is performed using a data sample collected by the CMS experiment corresponding to an integrated luminosity of 29 nb(-1). The differential production cross sections of the D*(+/-), D-+/-, and D-0 ((D) over bar (0)) mesons are presented in ranges of transverse momentum and pseudorapidity 4 < p(T) < 100 GeV and vertical bar eta vertical bar < 2.1, respectively. The results are compared to several theoretical calculations and to previous measurements.Peer reviewe

    Development and validation of HERWIG 7 tunes from CMS underlying-event measurements

    Get PDF
    This paper presents new sets of parameters (“tunes”) for the underlying-event model of the HERWIG7 event generator. These parameters control the description of multiple-parton interactions (MPI) and colour reconnection in HERWIG7, and are obtained from a fit to minimum-bias data collected by the CMS experiment at s=0.9, 7, and 13Te. The tunes are based on the NNPDF 3.1 next-to-next-to-leading-order parton distribution function (PDF) set for the parton shower, and either a leading-order or next-to-next-to-leading-order PDF set for the simulation of MPI and the beam remnants. Predictions utilizing the tunes are produced for event shape observables in electron-positron collisions, and for minimum-bias, inclusive jet, top quark pair, and Z and W boson events in proton-proton collisions, and are compared with data. Each of the new tunes describes the data at a reasonable level, and the tunes using a leading-order PDF for the simulation of MPI provide the best description of the dat

    Towards a global partnership model in interprofessional education for cross-sector problem-solving

    No full text
    Abstract Objectives A partnership model in interprofessional education (IPE) is important in promoting a sense of global citizenship while preparing students for cross-sector problem-solving. However, the literature remains scant in providing useful guidance for the development of an IPE programme co-implemented by external partners. In this pioneering study, we describe the processes of forging global partnerships in co-implementing IPE and evaluate the programme in light of the preliminary data available. Methods This study is generally quantitative. We collected data from a total of 747 health and social care students from four higher education institutions. We utilized a descriptive narrative format and a quantitative design to present our experiences of running IPE with external partners and performed independent t-tests and analysis of variance to examine pretest and posttest mean differences in students’ data. Results We identified factors in establishing a cross-institutional IPE programme. These factors include complementarity of expertise, mutual benefits, internet connectivity, interactivity of design, and time difference. We found significant pretest–posttest differences in students’ readiness for interprofessional learning (teamwork and collaboration, positive professional identity, roles, and responsibilities). We also found a significant decrease in students’ social interaction anxiety after the IPE simulation. Conclusions The narrative of our experiences described in this manuscript could be considered by higher education institutions seeking to forge meaningful external partnerships in their effort to establish interprofessional global health education

    Search for CP violating top quark couplings in pp collisions at s \sqrt{s} = 13 TeV

    No full text
    International audienceResults are presented from a search for CP violation in top quark pair production, using proton-proton collisions at a center-of-mass energy of 13 TeV. The data used for this analysis consist of final states with two charged leptons collected by the CMS experiment, and correspond to an integrated luminosity of 35.9 fb1^{−1}. The search uses two observables, O1 \mathcal{O} _{1} and O3 \mathcal{O} _{3}, which are Lorentz scalars. The observable O1 \mathcal{O} _{1} is constructed from the four-momenta of the charged leptons and the reconstructed top quarks, while O3 \mathcal{O} _{3} consists of the four-momenta of the charged leptons and the b quarks originating from the top quarks. Asymmetries in these observables are sensitive to CP violation, and their measurement is used to determine the chromoelectric dipole moment of the top quark. The results are consistent with the expectation from the standard model.[graphic not available: see fulltext

    Azimuthal Correlations within Exclusive Dijets with Large Momentum Transfer in Photon-Lead Collisions

    No full text
    International audienceThe structure of nucleons is multidimensional and depends on the transverse momenta, spatial geometry, and polarization of the constituent partons. Such a structure can be studied using high-energy photons produced in ultraperipheral heavy-ion collisions. The first measurement of the azimuthal angular correlations of exclusively produced events with two jets in photon-lead interactions at large momentum transfer is presented, a process that is considered to be sensitive to the underlying nuclear gluon polarization. This study uses a data sample of ultraperipheral lead-lead collisions at sNN=5.02  TeV, corresponding to an integrated luminosity of 0.38  nb-1, collected with the CMS experiment at the LHC. The measured second harmonic of the correlation between the sum and difference of the two jet transverse momentum vectors is found to be positive, and rising, as the dijet transverse momentum increases. A well-tuned model that has been successful at describing a wide range of proton scattering data from the HERA experiments fails to describe the observed correlations, suggesting the presence of gluon polarization effects

    The very forward CASTOR calorimeter of the CMS experiment

    No full text

    Energy calibration and resolution of the CMS electromagnetic calorimeter in pp collisions at s\sqrt{s} = 7 TeV

    Get PDF
    The energy calibration and resolution of the electromagnetic calorimeter (ECAL) of the CMS detector have been determined using proton-proton collision data from LHC operation in 2010 and 2011 at a centre-of-mass energy of sqrt(s)=7 TeV with integrated luminosities of about 5 inverse femtobarns. Crucial aspects of detector operation, such as the environmental stability, alignment, and synchronization, are presented. The in-situ calibration procedures are discussed in detail and include the maintenance of the calibration in the challenging radiation environment inside the CMS detector. The energy resolution for electrons from Z-boson decays is better than 2% in the central region of the ECAL barrel (for pseudorapidity abs(eta)<0.8) and is 2-5% elsewhere. The derived energy resolution for photons from 125 GeV Higgs boson decays varies across the barrel from 1.1% to 2.6% and from 2.2% to 5% in the entraps. The calibration of the absolute energy is determined from Z to e+e- decays to a precision of 0.4% in the barrel and 0.8% in the endcaps

    The very forward CASTOR calorimeter of the CMS experiment

    No full text
    International audienceThe physics motivation, detector design, triggers, calibration, alignment, simulation, and overall performance of the very forward CASTOR calorimeter of the CMS experiment are reviewed. The CASTOR Cherenkov sampling calorimeter is located very close to the LHC beam line, at a radial distance of about 1 cm from the beam pipe, and at 14.4 m from the CMS interaction point, covering the pseudorapidity range of -6.6 <η<\lt\eta\lt -5.2. It was designed to withstand high ambient radiation and strong magnetic fields. The performance of the detector in measurements of forward energy density, jets, and processes characterized by rapidity gaps, is reviewed using data collected in proton and nuclear collisions at the LHC
    corecore