55 research outputs found

    Lymphoproliferative syndromes associated with human herpesvirus-6A and human herpesvirus-6B

    Get PDF
    Human herpesvirus 6A and 6B (HHV-6A and HHV-6B) have been noted since their discovery for their T-lymphotropism. Although it has proven difficult to determine the extent to which HHV-6A and HHV-6B are involved in the pathogenesis of many diseases, evidence suggests that primary infection and reactivation of both viruses may induce or contribute to the progression of several lymphoproliferative disorders, ranging from benign to malignant and including infectious mononucleosis-like illness, drug induced hypersensitivity syndrome/drug reaction with eosinophilia and systemic symptoms (DIHS/DRESS), and nodular sclerosis Hodgkin's lymphoma. Herein, we discuss the conditions associated with the lymphoproliferative capacity of HHV-6, as well as the potential mechanisms behind them. Continued exploration on this topic may add to our understanding of the interactions between HHV-6 and the immune system and may open the doors to more accurate diagnosis and treatment of certain lymphoproliferative disorders

    Fjernledelse, styrkes eller svekkes tillit mellom medarbeidere og ledere

    Get PDF
    Dette er en oppgave som handler om fjernledelse, hvordan tilliten mellom medarbeidere og ledere blir styrket eller svekket. Det blir gjennomført kvalitativ metode for å undersøke hvordan det påvirker medarbeidere og ledere i mellomstore NAV kontor der fjernledelse blir utøvd. Tema som blir tatt opp er fjernledelse, autonomi, tillit, kommunikasjon og arbeidsmiljø

    Human Herpesvirus 6 and Malignancy: A Review

    Get PDF
    In order to determine the role of human herpesvirus 6 (HHV-6) in human disease, several confounding factors, including methods of detection, types of controls, and the ubiquitous nature of the virus, must be considered. This is particularly problematic in the case of cancer, in which rates of detection vary greatly among studies. To determine what part, if any, HHV-6 plays in oncogenesis, a review of the literature was performed. There is evidence that HHV-6 is present in certain types of cancer; however, detection of the virus within tumor cells is insufficient for assigning a direct role of HHV-6 in tumorigenesis. Findings supportive of a causal role for a virus in cancer include presence of the virus in a large proportion of cases, presence of the virus in most tumor cells, and virus-induced in-vitro cell transformation. HHV-6, if not directly oncogenic, may act as a contributory factor that indirectly enhances tumor cell growth, in some cases by cooperation with other viruses. Another possibility is that HHV-6 may merely be an opportunistic virus that thrives in the immunodeficient tumor microenvironment. Although many studies have been carried out, it is still premature to definitively implicate HHV-6 in several human cancers. In some instances, evidence suggests that HHV-6 may cooperate with other viruses, including EBV, HPV, and HHV-8, in the development of cancer, and HHV-6 may have a role in such conditions as nodular sclerosis Hodgkin lymphoma, gastrointestinal cancer, glial tumors, and oral cancers. However, further studies will be required to determine the exact contributions of HHV-6 to tumorigenesis

    Adiposity, hormone replacement therapy use and breast cancer risk by age and hormone receptor status: a large prospective cohort study

    Get PDF
    INTRODUCTION: Associations of hormone-receptor positive breast cancer with excess adiposity are reasonably well characterized; however, uncertainty remains regarding the association of body mass index (BMI) with hormone-receptor negative malignancies, and possible interactions by hormone replacement therapy (HRT) use. METHODS: Within the European EPIC cohort, Cox proportional hazards models were used to describe the relationship of BMI, waist and hip circumferences with risk of estrogen-receptor (ER) negative and progesterone-receptor (PR) negative (n = 1,021) and ER+PR+ (n = 3,586) breast tumors within five-year age bands. Among postmenopausal women, the joint effects of BMI and HRT use were analyzed. RESULTS: For risk of ER-PR- tumors, there was no association of BMI across the age bands. However, when analyses were restricted to postmenopausal HRT never users, a positive risk association with BMI (third versus first tertile HR = 1.47 (1.01 to 2.15)) was observed. BMI was inversely associated with ER+PR+ tumors among women aged ≤49 years (per 5 kg/m2 increase, HR = 0.79 (95%CI 0.68 to 0.91)), and positively associated with risk among women ≥65 years (HR = 1.25 (1.16 to 1.34)). Adjusting for BMI, waist and hip circumferences showed no further associations with risks of breast cancer subtypes. Current use of HRT was significantly associated with an increased risk of receptor-negative (HRT current use compared to HRT never use HR: 1.30 (1.05 to 1.62)) and positive tumors (HR: 1.74 (1.56 to 1.95)), although this risk increase was weaker for ER-PR- disease (Phet = 0.035). The association of HRT was significantly stronger in the leaner women (BMI ≤22.5 kg/m2) than for more overweight women (BMI ≥25.9 kg/m2) for, both, ER-PR- (HR: 1.74 (1.15 to 2.63)) and ER+PR+ (HR: 2.33 (1.84 to 2.92)) breast cancer and was not restricted to any particular HRT regime. CONCLUSIONS: An elevated BMI may be positively associated with risk of ER-PR- tumors among postmenopausal women who never used HRT. Furthermore, postmenopausal HRT users were at an increased risk of ER-PR- as well as ER+PR+ tumors, especially among leaner women. For hormone-receptor positive tumors, but not for hormone-receptor negative tumors, our study confirms an inverse association of risk with BMI among young women of premenopausal age. Our data provide evidence for a possible role of sex hormones in the etiology of hormone-receptor negative tumors

    Genome-wide association study of germline variants and breast cancer-specific mortality

    Get PDF
    BACKGROUND: We examined the associations between germline variants and breast cancer mortality using a large meta-analysis of women of European ancestry. METHODS: Meta-analyses included summary estimates based on Cox models of twelve datasets using ~10

    Polygenic Risk Modelling for Prediction of Epithelial Ovarian Cancer Risk

    Get PDF
    Funder: Funding details are provided in the Supplementary MaterialAbstractPolygenic risk scores (PRS) for epithelial ovarian cancer (EOC) have the potential to improve risk stratification. Joint estimation of Single Nucleotide Polymorphism (SNP) effects in models could improve predictive performance over standard approaches of PRS construction. Here, we implemented computationally-efficient, penalized, logistic regression models (lasso, elastic net, stepwise) to individual level genotype data and a Bayesian framework with continuous shrinkage, “select and shrink for summary statistics” (S4), to summary level data for epithelial non-mucinous ovarian cancer risk prediction. We developed the models in a dataset consisting of 23,564 non-mucinous EOC cases and 40,138 controls participating in the Ovarian Cancer Association Consortium (OCAC) and validated the best models in three populations of different ancestries: prospective data from 198,101 women of European ancestry; 7,669 women of East Asian ancestry; 1,072 women of African ancestry, and in 18,915 BRCA1 and 12,337 BRCA2 pathogenic variant carriers of European ancestry. In the external validation data, the model with the strongest association for non-mucinous EOC risk derived from the OCAC model development data was the S4 model (27,240 SNPs) with odds ratios (OR) of 1.38(95%CI:1.28–1.48,AUC:0.588) per unit standard deviation, in women of European ancestry; 1.14(95%CI:1.08–1.19,AUC:0.538) in women of East Asian ancestry; 1.38(95%CI:1.21-1.58,AUC:0.593) in women of African ancestry; hazard ratios of 1.37(95%CI:1.30–1.44,AUC:0.592) in BRCA1 pathogenic variant carriers and 1.51(95%CI:1.36-1.67,AUC:0.624) in BRCA2 pathogenic variant carriers. Incorporation of the S4 PRS in risk prediction models for ovarian cancer may have clinical utility in ovarian cancer prevention programs.</jats:p
    corecore