74 research outputs found

    Alveolar macrophage-derived type I interferons orchestrate innate immunity to RSV through recruitment of antiviral monocytes

    Get PDF
    Type I interferons (IFNs) are important for host defense from viral infections, acting to restrict viral production in infected cells and to promote antiviral immune responses. However, the type I IFN system has also been associated with severe lung inflammatory disease in response to respiratory syncytial virus (RSV). Which cells produce type I IFNs upon RSV infection and how this directs immune responses to the virus, and potentially results in pathological inflammation, is unclear. Here, we show that alveolar macrophages (AMs) are the major source of type I IFNs upon RSV infection in mice. AMs detect RSV via mitochondrial antiviral signaling protein (MAVS)–coupled retinoic acid–inducible gene 1 (RIG-I)–like receptors (RLRs), and loss of MAVS greatly compromises innate immune restriction of RSV. This is largely attributable to loss of type I IFN–dependent induction of monocyte chemoattractants and subsequent reduced recruitment of inflammatory monocytes (infMo) to the lungs. Notably, the latter have potent antiviral activity and are essential to control infection and lessen disease severity. Thus, infMo recruitment constitutes an important and hitherto underappreciated, cell-extrinsic mechanism of type I IFN–mediated antiviral activity. Dysregulation of this system of host antiviral defense may underlie the development of RSV-induced severe lung inflammation

    Birth, death, and resurrection: The life cycle of suprasubduction zone ophiolites

    Full text link

    Mechanisms and processes of stratal disruption and mixing in the development of mélanges and broken formations: Redefining and classifying mélanges

    Full text link

    Comparison of a Real-Time Reverse Transcriptase PCR Assay and a Culture Technique for Quantitative Assessment of Viral Load in Children Naturally Infected with Respiratory Syncytial Virus

    No full text
    Respiratory syncytial virus (RSV) is the most common cause of lower respiratory infection of children. Understanding RSV pathogenesis and evaluating interventions requires quantitative RSV testing. Previous studies have used the plaque assay technique. Real-time reverse transcriptase PCR (RTrtPCR) offers possible greater sensitivity, stability after freeze/thaw, and lower cost, thus facilitating multicenter studies. We developed RTrtPCR assays based upon the RSV N and F genes. The N-gene assay detected greater RSV quantity and was further evaluated. Standard curves utilized both extractions from RSV culture supernatants of known quantity and cloned purified copies of the target DNA. In vitro, the ratio of RSV subgroup A (RSV-A) genome copies to PFU was 153:1. A total of 462 samples collected quantitatively from 259 children were analyzed in duplicate by RTrtPCR. Results were compared with those of RSV plaque assays performed on fresh aliquots from the same children. Duplicate RTrtPCR results were highly correlated (r(2) = 0.9964). The mean viral load from nasal washes obtained on the first study day was 5.75 ± standard error of the mean 0.09 log PFU equivalents (PFUe)/ml. Viral load by RTrtPCR correlated with plaque assay results (r(2) = 0.158; P < 0.0001). Within individuals, upper and lower respiratory tract secretions contained similar viral concentrations. RSV-A-infected children had 1.17 log PFUe higher viral loads than did those with RSV-B (P < 0.0001). RSV quantification by RTrtPCR of the N gene is precise and has significant, though limited, correlation with quantitative culture. The utility of the RTrtPCR quantification technique for clinical studies would be solidified after its correlation with RSV disease severity is established
    • …
    corecore