24 research outputs found

    Nuclear Actin and Lamins in Viral Infections

    Get PDF
    Lamins are the best characterized cytoskeletal components of the cell nucleus that help to maintain the nuclear shape and participate in diverse nuclear processes including replication or transcription. Nuclear actin is now widely accepted to be another cytoskeletal protein present in the nucleus that fulfills important functions in the gene expression. Some viruses replicating in the nucleus evolved the ability to interact with and probably utilize nuclear actin for their replication, e.g., for the assembly and transport of capsids or mRNA export. On the other hand, lamins play a role in the propagation of other viruses since nuclear lamina may represent a barrier for virions entering or escaping the nucleus. This review will summarize the current knowledge about the roles of nuclear actin and lamins in viral infections

    Herpesviral replication compartments move and coalesce at nuclear speckles to enhance export of viral late mRNA

    No full text
    The role of the intranuclear movement of chromatin in gene expression is not well-understood. Herpes simplex virus forms replication compartments (RCs) in infected cell nuclei as sites of viral DNA replication and late gene transcription. These structures develop from small compartments that grow in size, move, and coalesce. Quantitative analysis of RC trajectories, derived from 4D images, shows that most RCs move by directed motion. Directed movement is impaired in the presence of actin and myosin inhibitors as well as a transcription inhibitor. In addition, RCs coalesce at and reorganize nuclear speckles. Lastly, distinct effects of actin and myosin inhibitors on viral gene expression suggest that RC movement is not required for transcription, but rather, movement results in the bridging of transcriptionally active RCs with nuclear speckles to form structures that enhance export of viral late mRNAs
    corecore