2,690 research outputs found

    Using eddy covariance to measure the dependence of air–sea CO2 exchange rate on friction velocity

    Get PDF
    Parameterisation of the air–sea gas transfer velocity of CO2 and other trace gases under open-ocean conditions has been a focus of air–sea interaction research and is required for accurately determining ocean carbon uptake. Ships are the most widely used platform for air–sea flux measurements but the quality of the data can be compromised by airflow distortion and sensor cross-sensitivity effects. Recent improvements in the understanding of these effects have led to enhanced corrections to the shipboard eddy covariance (EC) measurements. Here, we present a revised analysis of eddy covariance measurements of air–sea CO2 and momentum fluxes from the Southern Ocean Surface Ocean Aerosol Production (SOAP) study. We show that it is possible to significantly reduce the scatter in the EC data and achieve consistency between measurements taken on station and with the ship underway. The gas transfer velocities from the EC measurements correlate better with the EC friction velocity (u*) than with mean wind speeds derived from shipboard measurements corrected with an airflow distortion model. For the observed range of wind speeds (u10 N = 3–23 m s−1), the transfer velocities can be parameterised with a linear fit to u*. The SOAP data are compared to previous gas transfer parameterisations using u10 N computed from the EC friction velocity with the drag coefficient from the Coupled Ocean–Atmosphere Response Experiment (COARE) model version 3.5. The SOAP results are consistent with previous gas transfer studies, but at high wind speeds they do not support the sharp increase in gas transfer associated with bubble-mediated transfer predicted by physically based models

    Air/sea DMS gas transfer in the North Atlantic: evidence for limited interfacial gas exchange at high wind speed

    Get PDF
    Shipboard measurements of eddy covariance dimethylsulfide (DMS) air–sea fluxes and seawater concentration were carried out in the North Atlantic bloom region in June/July 2011. Gas transfer coefficients (k660) show a linear dependence on mean horizontal wind speed at wind speeds up to 11 m s−1. At higher wind speeds the relationship between k660 and wind speed weakens. At high winds, measured DMS fluxes were lower than predicted based on the linear relationship between wind speed and interfacial stress extrapolated from low to intermediate wind speeds. In contrast, the transfer coefficient for sensible heat did not exhibit this effect. The apparent suppression of air–sea gas flux at higher wind speeds appears to be related to sea state, as determined from shipboard wave measurements. These observations are consistent with the idea that long waves suppress near-surface water-side turbulence, and decrease interfacial gas transfer. This effect may be more easily observed for DMS than for less soluble gases, such as CO2, because the air–sea exchange of DMS is controlled by interfacial rather than bubble-mediated gas transfer under high wind speed conditions

    The Effects of Retrogression and Reaging on Aluminum Alloy 2099 (C458)

    Get PDF
    The objective of this study was to investigate the feasibility of performing retrogression and reaging (RRA) heat treatments on 2099 aluminum-lithium alloy. The retrogression temperatures were 200-250 A degrees C and retrogression times were 5-60 min. Half of the samples were exposed to a salt fog environment. Interestingly, the samples exposed to salt spray had consistently higher mechanical tensile properties than those which were not exposed

    The Effects of Retrogression and Reaging on Aluminum Alloy 2195

    Get PDF
    A retrogression and reaging (RRA) treatment was performed on 2195 Al-Li Alloy. The exposure times were from 5 to 60 min, and the temperatures were from 200 to 250 A degrees C. Samples that were exposed to a salt spray test had overall similar mechanical properties as compared to those that were not exposed. The percent elongation, however, was significantly deteriorated due to the salt spray exposure. The mechanical properties of the 2195 samples were compared to those of 2099 samples exposed to similar treatments in an earlier study

    Trabecular architecture of the great ape and human femoral head

    Get PDF
    Studies of femoral trabecular structure have shown that the orientation and volume of bone are associated with variation in loading and could be informative about individual joint positioning during locomotion. In this study, we analyse for the first time trabecular bone patterns throughout the femoral head using a wholeepiphysis approach to investigate how potential trabecular variation in humans and great apes relates to differences in locomotor modes. Trabecular architecture was analysed using microCT scans of Pan troglodytes (n = 20), Gorilla gorilla (n = 14), Pongo sp. (n = 5) and Homo sapiens (n = 12) in MEDTOOL 4.1. Our results revealed differences in bone volume fraction (BV/TV) distribution patterns, as well as overall trabecular parameters of the femoral head between great apes and humans. Pan and Gorilla showed two regions of high BV/TV in the femoral head, consistent with hip posture and loading during two discrete locomotor modes: knuckle-walking and climbing. Most Pongo specimens also displayed two regions of high BV/TV, but these regions were less discrete and there was more variability across the sample. In contrast, Homo showed only one main region of high BV/TV in the femoral head and had the lowest BV/TV, as well as the most anisotropic trabeculae. The Homo trabecular structure is consistent with stereotypical loading with a more extended hip compared with great apes, which is characteristic of modern human bipedalism. Our results suggest that holistic evaluations of femoral head trabecular architecture can reveal previously undetected patterns linked to locomotor behaviour in extant apes and can provide further insight into hip joint loading in fossil hominins and other primates

    Cronkhite-Canada syndrome associated with rib fractures: a case report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cronkhite-Canada syndrome (CCS) is a rare multiple gastrointestinal polyposis. Up till now, many complications of CCS have been reported in the literature, but rib fracture is not included.</p> <p>Case Presentation</p> <p>We report a case of a 58-year-old man who was admitted to our hospital with a 6-month history of frequent diarrhea, intermittent hematochezia and a weight loss of 13 kg. On admission, physical examination revealed alopecia of the scalp, hyperpigmentation of the hands and soles, and dystrophy of the fingernails. Laboratory data revealed hypocalcaemia and hypoproteinemia. Esophagogastroduodenoscopy, video capsule endoscopy and colonoscopy revealed various sizes of generalized gastrointestinal polyps. Histological examination of the biopsy specimens obtained from the stomach and the colon showed adenomatous polyp and inflammatory polyp respectively. Thus, a diagnosis of CCS was made. After treatment with corticosteroids for 24 days and nutritional support for two months, his clinical condition improved. Two months later, he was admitted to our hospital for the second time with frequent diarrhea and weight loss. The chest radiography revealed fractures of the left sixth and seventh ribs. Examinations, including emission computed tomography, bone densitometry test, and other serum parameters, were performed, but could not identify the definite etiology of the rib fractures. One month later, the patient suffered from aggravating multiple rib fractures due to the ineffective treatment, persistent hypocalcaemia and malnutrition.</p> <p>Conclusions</p> <p>This is the first case of a CCS patient with multiple rib fractures. Although the association between CCS and multiple rib fractures in this case remains uncertain, we presume that persistent hypocalcaemia and malnutrition contribute to this situation, or at least aggravate this rare complication. Besides, since prolonged corticosteroid therapy will result in an increased risk of osteoporotic fracture, CCS patients who accept corticosteroid therapy could be potential victims of rib fracture.</p

    IgG regulation through FcRn blocking: A novel mechanism for the treatment of myasthenia gravis

    Get PDF
    The neonatal Fc receptor (FcRn) is an MHC class I–like molecule that is widely distributed in mammalian organs, tissues, and cells. FcRn is critical to maintaining immunoglobulin G (IgG) and albumin levels through rescuing these molecules from lysosomal degradation. IgG autoantibodies are associated with many autoimmune diseases, including myasthenia gravis (MG), a rare neuromuscular autoimmune disease that causes debilitating and, in its generalized form (gMG), potentially life-threatening muscle weakness. IgG autoantibodies are directly pathogenic in MG and target neuromuscular junction proteins, causing neuromuscular transmission failure. Treatment approaches that reduce autoantibody levels, such as therapeutic plasma exchange and intravenous immunoglobulin, have been shown to be effective for gMG patients but are not indicated as ongoing maintenance therapies and can be associated with burdensome side effects. Agents that block FcRn-mediated recycling of IgG represent a rational and promising approach for the treatment of gMG. Blocking FcRn allows targeted reduction of all IgG subtypes without decreasing concentrations of other Ig isotypes; therefore, FcRn blocking could be a safe and effective treatment strategy for a broad population of gMG patients. Several FcRn-blocking antibodies and one antibody Fc fragment have been developed and are currently in various stages of clinical development. This article describes the mechanism of FcRn blockade as a novel approach for IgG-mediated disease therapy and reviews promising clinical data using such FcRn blockers for the treatment of gMG

    The relationship between ocean surface turbulence and air-sea gas transfer velocity: An in-situ evaluation

    Get PDF
    Although the air-sea gas transfer velocity k is usually parameterized with wind speed, the so-called small-eddy model suggests a relationship between k and ocean surface dissipation of turbulent kinetic energy . Laboratory and field measurements of k and have shown that this model holds in various ecosystems. Here, field observations are presented supporting the theoretical model in the open ocean. These observations are based on measurements from the Air-Sea Interaction Profiler and eddy covariance CO2 and DMS air-sea flux data collected during the Knorr11 cruise. We show that the model results can be improved when applying a variable Schmidt number exponent compared to a commonly used constant value of 1/2. Scaling to the viscous sublayer allows us to investigate the model at different depths and to expand its applicability for more extensive data sets
    corecore