162 research outputs found

    Guanylate cyclase activity in permeabilized <em>Dictyostelium discoideum</em> cells

    Get PDF
    Dictyostelium discoideum cells respond to chemoattractants by transient activation of guanylate cyclase. Cyclic GMP is a second messenger that transduces the chemotactic signal. We used an electropermeabilized cell system to investigate the regulation of guanylate cyclase. Enzyme activity in permeabilized cells was dependent on the presence of a nonhydrolysable GTP analogue (e.g., GTPγS), which could not be replaced by GTP, GDP, or GMP. After the initiation of the guanylate cyclase reaction in permeabilized cells only a short burst of activity is observed, because the enzyme is inactivated with a t1.2 of about 15 s. We show that inactivation is not due to lack of substrate, resealing of the pores in the cell membrane, product inhibition by cGMP, or intrinsic instability of the enzyme. Physiological concentrations of Ca2+ ions inhibited the enzyme (half‐maximal effect at 0.3 μM), whereas InsP3 had no effect. Once inactivated, the enzyme could only be reactivated after homogenization of the permeabilized cells and removal of the soluble cell fraction. This suggests that a soluble factor is involved in an autonomous process that inactivates guanylate cyclase and is triggered only after the enzyme is activated. The initial rate of guanylate cyclase activity in permeabilized cells is similar to that in intact, chemotactically activated cells. Moreover, the rate of inactivation of the enzyme in permeabilized cells and that due to adaptation in vivo are about equal. This suggests that the activation and inactivation of guanylate cyclase observed in this permeabilized cell system is related to that of chemotactic activation and adaptation in intact cells

    Finite depth effects on solitary waves in a floating ice sheet

    Get PDF
    A theoretical and numerical study of two-dimensional nonlinear flexural-gravity waves propagating at the surface of an ideal fluid of finite depth, covered by a thin ice sheet, is presented. The ice-sheet model is based on the special Cosserat theory of hyperelastic shells satisfying Kirchhoff׳s hypothesis, which yields a conservative and nonlinear expression for the bending force. From a Hamiltonian reformulation of the governing equations, two weakly nonlinear wave models are derived: a 5th-order Korteweg–de Vries equation in the long-wave regime and a cubic nonlinear Schrödinger equation in the modulational regime. Solitary wave solutions of these models and their stability are analysed. In particular, there is a critical depth below which the nonlinear Schrödinger equation is of focusing type and thus admits stable soliton solutions. These weakly nonlinear results are validated by comparison with direct numerical simulations of the full governing equations. It is observed numerically that small- to large-amplitude solitary waves of depression are stable. Overturning waves of depression are also found for low wave speeds and sufficiently large depth. However, solitary waves of elevation seem to be unstable in all cases

    Simulation of a Dripping Faucet

    Full text link
    We present a simulation of a dripping faucet system. A new algorithm based on Lagrangian description is introduced. The shape of drop falling from a faucet obtained by the present algorithm agrees quite well with experimental observations. Long-term behavior of the simulation can reproduce period-one, period-two, intermittent and chaotic oscillations widely observed in experiments. Possible routes to chaos are discussed.Comment: 20 pages, 15 figures, J. Phys. Soc. Jpn. (in press

    Guanylyl cyclase activity associated with putative bifunctional integral membrane proteins in Plasmodium falciparum.

    Get PDF
    We report here that guanylyl cyclase activity is associated with two large integral membrane proteins (PfGCalpha and PfGCbeta) in the human malaria parasite Plasmodium falciparum. Unusually, the proteins appear to be bifunctional; their amino-terminal regions have strong similarity with P-type ATPases, and the sequence and structure of the carboxyl-terminal regions conform to that of G protein-dependent adenylyl cyclases, with two sets of six transmembrane sequences, each followed by a catalytic domain (C1 and C2). However, amino acids that are enzymatically important and present in the C2 domain of mammalian adenylyl cyclases are located in the C1 domain of the P. falciparum proteins and vice versa. In addition, certain key residues in these domains are more characteristic of guanylyl cyclases. Consistent with this, guanylyl cyclase activity was obtained following expression of the catalytic domains of PfGCbeta in Escherichia coli. In P. falciparum, expression of both genes was detectable in the sexual but not the asexual blood stages of the life cycle, and PfGCalpha was localized to the parasite/parasitophorous vacuole membrane region of gametocytes. The profound structural differences identified between mammalian and parasite guanylyl cyclases suggest that aspects of this signaling pathway may be mechanistically distinct

    The Effect of A Geriatric Assessment on Treatment Decisions for Patients with Lung Cancer

    Get PDF
    BACKGROUND: Decision-making for older patients with lung cancer can be complex and challenging. A geriatric assessment (GA) may be helpful and is increasingly being used since 2005 when SIOG advised to incorporate this in standard work-up for the elderly with cancer. Our aim was to evaluate the value of a geriatric assessment in decision-making for patients with lung cancer. METHODS: Between January 2014 and April 2016, data on patients with lung cancer from two teaching hospitals in the Netherlands were entered in a prospective database. Outcome of geriatric assessment, non-oncologic interventions, and suggested adaptations of oncologic treatment proposals were evaluated. RESULTS: 83 patients (median age 79 years) were analyzed with a geriatric assessment, of which 59% were treated with a curative intent. Half of the patients were classified as ECOG PS 0 or 1. The majority of the patients (78%) suffered from geriatric impairments and 43% (n = 35) of the patients suffered from three or more geriatric impairments (out of eight analyzed domains). Nutritional status was most frequently impaired (52%). Previously undiagnosed impairments were identified in 58% of the patients, and non-oncologic interventions were advised for 43%. For 33% of patients, adaptations of the oncologic treatment were proposed. Patients with higher number of geriatric impairments more often were advised a reduced or less intensive treatment (p < 0.001). CONCLUSION: A geriatric assessment uncovers previously unknown health impairments and provides important guidance for tailored treatment decisions in patients with lung cancer. More research on GA-stratified treatment decisions is needed

    The evolution of aggregative multicellularity and cell-cell communication in the Dictyostelia

    Get PDF
    AbstractAggregative multicellularity, resulting in formation of a spore-bearing fruiting body, evolved at least six times independently amongst both eukaryotes and prokaryotes. Amongst eukaryotes, this form of multicellularity is mainly studied in the social amoeba Dictyostelium discoideum. In this review, we summarise trends in the evolution of cell-type specialisation and behavioural complexity in the four major groups of Dictyostelia. We describe the cell–cell communication systems that control the developmental programme of D. discoideum, highlighting the central role of cAMP in the regulation of cell movement and cell differentiation. Comparative genomic studies showed that the proteins involved in cAMP signalling are deeply conserved across Dictyostelia and their unicellular amoebozoan ancestors. Comparative functional analysis revealed that cAMP signalling in D. discoideum originated from a second messenger role in amoebozoan encystation. We highlight some molecular changes in cAMP signalling genes that were responsible for the novel roles of cAMP in multicellular development

    Clinical management of seafood allergy

    Get PDF
    Seafood plays an important role in human nutrition and health. A good patient workup and sensitive diagnostic analysis of IgE antibody reactivity can distinguish between a true seafood allergy and other adverse reactions generated by toxins or parasites contaminating ingested seafood. The 2 most important seafood groupings include the fish and shellfish. Shellfish, in the context of seafood consumption, constitutes a diverse group of species subdivided into crustaceans and mollusks. The prevalence of shellfish allergy seems to be higher than that of fish allergy, with an estimate of up to 3% in the adult population and fin fish allergy prevalence of approximately 1%. Clinical evaluation of the seafood-allergic patient involves obtaining a detailed history and obtaining in vivo and/or in vitro testing with careful interpretation of results with consideration of cross-reactivity features of the major allergens. Oral food challenge is useful not only for the diagnosis but also for avoiding unnecessary dietary restrictions. In this review, we highlight some of the recent reports to provide solid clinical and laboratory tools for the differentiation of fish allergy from shellfish allergy, enabling best treatment and management of these patients
    corecore