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Abstract

Interferon alpha (IFNa) is used for the treatment of hepatitis C infection and whilst efficacious it is associated with multiple
adverse events including reduced leukocyte, erythrocyte, and platelet counts, fatigue, and depression. These events are
most likely caused by systemic exposure to interferon. We therefore hypothesise that targeting the therapeutic directly to
the intended site of action in the liver would reduce exposure in blood and peripheral tissue and hence improve the safety
and tolerability of IFNa therapy. We genetically fused IFN to a domain antibody (dAb) specific to a hepatocyte restricted
antigen, asialoglycoprotein receptor (ASGPR). Our results show that the murine IFNa2 homolog (mIFNa2) fused to an ASGPR
specific dAb, termed DOM26h-196-61, could be expressed in mammalian tissue culture systems and retains the desirable
biophysical properties and activity of both fusion partners when measured in vitro. Furthermore a clear increase in in vivo
targeting of the liver by mIFNa2-ASGPR dAb fusion protein, compared to that observed with either unfused mIFNa2 or
mIFNa2 fused to an isotype control dAb VHD2 (which does not bind ASGPR) was demonstrated using microSPECT imaging.
We suggest that these findings may be applicable in the development of a liver-targeted human IFN molecule with
improved safety and patient compliance in comparison to the current standard of care, which could ultimately be used as a
treatment for human hepatitis virus infections.
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Introduction

The current standard of care for hepatitis C virus (HCV)

infection is treatment with pegylated IFN alpha, (PegasysH and

PegintronH) in combination with the nucleoside analogue Riba-

virin [1,2]. The potent anti-viral, anti-proliferative and immuno-

modulatory mechanisms of the type I interferons, a class of

cytokines to which IFNa belongs, are well documented [3]. Whilst

clearly efficacious, the systemic delivery of IFNa not only

generates an anti-viral response in the liver, but also results in

leukocyte activation in the blood leading to adverse responses to

the therapy including cytokine release, flu-like symptoms and

depression. These side-effects can be severe which leads to a

significant proportion of patients discontinuing treatment [4,5,6].

The targeting of bioactive molecules to tissues is an attractive

concept and in particular may offer multiple benefits in the

treatment of HCV with IFNa. The perceived benefits are two-

fold, namely increasing the local concentration of a therapeutic

compound at the required site of action, potentially retaining

efficacy with a reduced dose, and reducing undesired activity of a

therapeutic in non-target tissues, potentially improving safety and

tolerability. The application of this concept in multiple disease

indications has been investigated using a wide range of method-

ologies, for example site-specific delivery of cytotoxic drugs for

cancer therapy [7,8], liposomal delivery of antigens in vaccine

development [9] and the targeting of blood-brain barrier (BBB)

receptors to facilitate transfer of biopharmaceuticals from the

blood into the brain parenchyma [10].

Viral replication in HCV infection occurs predominantly in the

liver. Asialoglycoprotein receptor (ASGPR) is a cell surface

receptor expressed exclusively in hepatic parenchymal cells [11].

ASGPR is a C-type (calcium dependent) lectin composed of two

transmembrane glycoprotein subunits, termed H1 and H2. The

aglycosyl H1 and H2 subunits are approximately 35 and 33 kDa

in size respectively, though purified ASGPR protein subunits are

significantly larger due to post-translational modification. ASGPR

mediates endocytosis of plasma glycoproteins that have exposed

terminal galactose residues from which terminal sialic residues

have been removed [12]. In addition, ASGPR has also been linked

to the entry of HCV into hepatocytes [13]. Despite reports of

potential extra hepatic expression in human kidney [14], thyroid

[15] and activated T cells [16], ASGPR has been exploited in the

targeting of therapeutic molecules to the liver. For example,

ASGPR-targeted nanoparticles loaded with cytotoxic agents such

as paclitaxel result in enhanced cell killing activity against ASGPR-
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positive cell lines when compared with free paclitaxel [17].

ASGPR-directed nanoparticles have also been used to deliver

transgenes and antisense oligonucleotides to ASGPR-expressing

primary hepatocytes and cell lines [18,19]. In vivo radioiodinated

copolymers with ASGPR binding activity accumulate in the liver

following intravenous administration in rats [20]. In a study

conducted by Peng et al., systemic delivery of the apoptin gene,

which selectively induces apoptosis in malignant cells, linked to

asialoglycoprotein resulted in specific delivery to ASGPR-positive

HepG2 derived tumors xenografted in SCID mice and significant

tumour regression. By contrast ASGPR-apoptin transgene conju-

gates were not able to induce tumour regression in non-hepatocyte

derived A549 xenografted animals [21].

Compelling evidence for the potential application of ASGPR-

mediated hepatic delivery in improving antiviral efficacy of type I

interferons is provided in a study by Eto and Takahashi. Following

enzymatic removal of terminal sialic acid residues from the N-

linked oligosaccharide chain of human interferon beta (IFNb), the

investigators were able to demonstrate enhanced interferon

signaling activity and inhibition of viral replication in HBV

transfected HepG2 cells compared to the unmodified form of the

protein [22]. This enhanced antiviral activity was presumably due

to ASGPR binding, as it could be partially inhibited by natural

ASGPR ligands such as asialofetuin. Significantly enhanced in vivo

antiviral efficacy of murine asialo-IFNb, compared with that of the

unmodified protein, was also shown in HBV transfected BALB/c

athymic nude mice.

In this study, using phage display technology we generated a

dAb specific for ASGPR and genetically fused it to IFNa. The

small size of dAbs (11–15 kDa) coupled with their high affinity for

their respective antigen can help preserve the activity of fusion

partners so makes their use attractive [23,24,25]. We show that the

IFNa-ASGPR dAb fusion protein can be expressed in mammalian

cells, that it binds to ASGPR expressed on liver cell lines and

retains cytokine activity. Furthermore, using SPECT imaging we

show that the fusion specifically targets the liver suggesting that

this approach may have therapeutic application and ultimately

lead to a reduction in adverse events associated with systemic

delivery of IFNa.

Materials and Methods

Antigen and mIFNa2 protein generation
Human and murine ASGPR-H1 ectodomains and mIFNa2

were generated as His(6)-tagged inserts via PCR and cloned into

pDOM50, a derivative of the pTT5 HEK293E expression vector

(National Research Council, Canada) using BamHI/HindIII

restriction sites. Protein was expressed in HEK293 cells and

secreted into the culture supernatant [26]. Expressed protein was

then purified on Ni-NTA resin (Qiagen) according to manufac-

turer’s instructions. Purified proteins were dialysed into Dulbecco’s

PBS.

Selection and Isolation of ASGPR specific dAbs by phage
display

Human ASGPR antigen was passively coated on immunotubes

(Nunc) overnight at 1 mg/ml in Tris-HCl buffered saline (TBS;

50 mM Tris-HCl, 150 mM NaCl, pH 8) supplemented with

5 mM CaCl2 (TBS/Ca2+). After coating with antigen, tubes were

blocked by addition of 2% (w/v) Marvel non-fat milk in TBS

supplemented with 5 mM CaCl2 (MTBS/Ca2+). Selections were

carried out using phage libraries displaying antibody single

variable domains. Library aliquots were incubated with antigen-

coated immunotubes in MTBS/Ca2+ before washing tubes with

TBS/Ca2+. Bound phage was then eluted with 1 mg/ml trypsin.

Following selection, eluted phage was used to infect log phase TG1

E.coli and then infected cells were plated onto LB agar

supplemented with 15 mg/ml tetracycline. Cells infected with the

phage were then grown up in 26yeast tryptone (26YT) medium

(supplemented with tetracycline) overnight at 37uC before

precipitation of phage from the culture supernatant using chilled

PEG-NaCl (20% (v/v) polyethylene glycol 8000, 2.5 M NaCl) and

used in a second round of selection as above, using antigen coated

at 0.2 mg/ml. Precipitated phage from this second round of

selection was subsequently used in a third round of selection using

antigen coated at 0.04 mg/ml.

Screening selection outputs for ASGPR specific dAbs
After three rounds of selection, dAb genes from each library

pool were subcloned from the phage vector using the restriction

enzymes SalI and NotI. The enriched dAb genes were ligated into

the corresponding sites in pDOM10, a pUC119-based vector, in

order to facilitate soluble expression of dAb proteins with a C-

terminal FLAG epitope tag into the periplasm and culture

supernatant of E. coli TOP10 cells (Invitrogen) transformed with

the dAb expression construct. Transformants were grown over-

night on LB agar plates supplemented with 100 mg/ml carbeni-

cillin and 5% (w/v) glucose.

Individual colonies were then picked into 96-well plates

containing 100 ml/well 26 YT medium supplemented with

100 mg/ml carbenicillin and grown at 37uC for 4 hours with

shaking at 250 rpm. Protein expression was induced by addition of

100 ml per well 26 YT medium supplemented with 100 mg/ml

carbenicillin and 0.1 mM IPTG, with overnight incubation using

the same conditions.

The antigen binding of individual dAb clones was assessed by

ELISA. Human ASGPR antigen was coated at 1 mg/ml onto a

Maxisorp (NUNC) plate overnight at 4uC. The plate was then

blocked with 2% (v/v) Tween 20 in TBS/Ca2+, followed by

incubation with dAb supernatant diluted 1:1 with 0.1% (v/v)

Tween 20-TBS/Ca2+, followed by detection with 1:5000 anti-

FLAG (M2)-HRP (Sigma-Aldrich). All steps after blocking were

carried out at room temperature. The binding of the dAb

supernatant to a His(6)-tagged glycosylated irrelevant control

antigen was also analysed.

Expression and purification of dAb proteins
FLAG-tagged dAbs were expressed in TOP10 E. coli following

growth in TB OnEx auto induction medium (Novagen) supple-

mented with 100 mg/ml carbenicillin at 30uC for 72 hrs.

Expressed protein was purified from clarified culture supernatant

using protein A coupled to NHS streamline resin (GE Healthcare).

Briefly, proteins were batch-bound to resin for 4 hrs at room

temperature before washing with 10 column volumes of 25 mM

Na Acetate, pH 6. Bound protein was eluted with 4 CV 25 mM

Na Acetate, pH 3, and then subsequently neutralised with 1/10th

vol. 1 M Na Acetate, pH 6.

Emulsion Based Affinity maturation of ASGPR specific
dAb DOM26h-196

Affinity maturation of dAb clone DOM26h-196 was carried out

by diversification of CDR regions using doped oligos where the

diversified positions contained 85% parent base and an equimolar

mix of the remaining three bases. Briefly the amplification

products for individual CDR libraries were purified by gel

electrophoresis, mixed in equal ratios, spliced by ‘splicing of

overlapping extension’ (SOE) PCR and re-amplified by PCR.

Liver Targeting of Interferon Alpha

PLOS ONE | www.plosone.org 2 February 2013 | Volume 8 | Issue 2 | e57263



Spliced and amplified libraries were thereafter cut with SalI and

NotI enzymes and ligated into pIE2a2A vector. The in vitro

expression construct was PCR amplified from the ligation and the

libraries for CDR1, CDR2 and CDR3 were thereafter pooled for

selection. Nine rounds of selection were carried out in total. In the

first round of selection 2.56109 molecules of library were

compartmentalised in 1 ml of emulsion, in the subsequent eight

rounds 56108 DNA molecules per reaction were used. Affinity

capture of protein-DNA complexes was carried out using human

ASGPR antigen biotinylated with NHS-LC-biotin (Pierce, ac-

cording to manufacturer’s protocol). M280 Streptavidin Dyna-

beads at 36107 beads per reaction (Invitrogen) were used

throughout to capture ligand-dAb-DNA complexes. Following

the final round of selection, the amplified DNA was cut with SalI/

NotI enzymes, cloned into pDOM10 vector and transformed into

Mach1 Chemically competent cells (Invitrogen). Selection outputs

were expressed as described above and assayed for antigen-

binding activity by BIAcore using both human and mouse

ASGPR. Affinity maturation screening identified beneficial

mutations in all three CDRs of clone DOM26h-196, suggesting

the possibility of further improvement by CDR shuffling and

screening. CDR1, 2 and 3 sequences from several improved clones

were amplified by PCR before purifying by gel electrophoresis,

mixing in equal ratios and splicing by SOE PCR. Spliced PCR

fragments were cloned into pDOM10 expression vector and

transformed into Mach1 Chemically competent cells (Invitrogen).

96 transformants were picked and used to express/purify dAb

protein as described above. All 96 clones were assayed for antigen-

binding activity by BIAcore, and from this screen clone DOM26h-

196-61 was identified.

Flow cytometry
Flow cytometry data was generated using the ASGPR positive

human hepatocarcinoma derived cell line Huh7, primary human

hepatocytes (Celsis IVT) and the ASGPR negative monocyte

derived cell line U937 (American Type Culture Collection, ATCC

number CRL-1593.2). Adherent Huh7 cells were harvested using

an enzyme-free cell dissociation buffer (Gibco) and washed in PBS

containing Ca2+ and Mg2+ supplemented with 10% (v/v) pooled

human serum (Sigma) (FACS buffer). U937 cells were harvested

from culture & washed in FACS buffer & frozen primary

hepatocytes were revived from storage immediately prior to the

assay. All cells were seeded into 96 well v- bottomed microtitre

plates (Nunc) at a concentration of 16105 cells per well and

incubated for 45 minutes at 4uC with the appropriate concentra-

tion of dAb or VHD2 isotype control molecule. The cells were then

washed with FACS buffer and incubated for one hour at 4uC with

a mouse monoclonal antibody specific to human VH domains

(anti-VH) for 45 minutes at 4uC. Following the incubation, cells

were washed as before and were then incubated with an Alexa-647

conjugated goat anti-mouse pAb (Molecular Probes). Cells were

then washed as before and resuspended in 100 ml PBS containing

1 mM SytoxHBlue dead cell exclusion dye (Molecular Probes).

Fluorescence intensity in the APC channel was determined using a

BD FACS Canto II flow cytometer.

Cloning and expression of mIFNa2-dAb fusion proteins
mIFNa2-dAb fusions were generated by SOE PCR and the

inserts cloned into pDOM50, again using BamHI/HindIII. The

mIFNa2-dAb fusions were expressed in HEK293 cells as

previously described and then purified on protein A streamline

or NiNTA resins as described above.

Surface plasmon resonance assay
BIAcoreTM SA chip (Series S Sensor Chip SA Certified, GE

Healthcare Bio-Sciences AB) was coated with biotinylated

recombinant mouse ASGPR1. One flow cell (Fc1) was used as a

reference flow cell. HBS-P+ buffer (10 mM HEPES, 150 mM

NaCl, 0.05% Surfactant P20, pH 7.4) was used as running buffer.

The sample compartment of the instrument was kept at 4uC
throughout the experiment. The data collection rate was 10 Hz. A

concentration series of molecules under investigation, prepared in

running buffer, were injected over the surface of the chip at 50 ml/

min flow rate at 25uC. The injection time was 90 s and the

dissociation time was 120 s. Regeneration of the chip surface

between injections (back to baseline) was carried out using 10 mM

glycine pH 2.0 solution.

B16-BlueTM interferon activity assay
To confirm activity of the mIFNa2 arm of the fusion protein,

B16-BlueTM IFNa/b cells (InvivoGen), stably transfected with a

SEAP reporter gene under the control of the ISG54 promoter

enhanced by a multimeric ISRE, were seeded at 56104 cells/well

in 50 ml of assay media (RPMI1640 supplemented with 10% FBS

(v/v)) in 96-well microtitre plates. Test molecules, over a dose

range up to 300 nM, were added in a 50 ml volume of assay media

to the plates in quadruplicate and the plates incubated in a 5%

CO2 humidified atmosphere at 37uC. After 20 hours 40 ml of the

culture supernatant was then transferred to fresh 96-well

microtitre plate and 160 ml of QUANTI-BlueTM SEAP visualiza-

tion reagent (made according to manufacturer’s instructions) was

added to each well. The plates were left at room temperature until

an absorbance at 640 nm of 1.0–1.5 for the mIFNa2 control had

been reached. The absorbance was read using an M5e plate

reader (Spectramax). Data was analysed using GraphPad Prism

software (Graphpad Software Inc.).

Conjugation of VHD2 isotype control dAb with
maleimide-DOTA

All buffers used for preparation, purification and radiolabelling

of dAb/mIFNa2 conjugates were pre-treated with Chelex-100

resin (Bio-Rad). VHD2 isotype control dAb was dialysed into

0.25 M HEPES, pH 7. The dialysed solution was treated with

TCEP at a final concentration of 5 mM for 30 min followed by

the addition of a 30-fold excess of maleimide-DOTA (Macrocy-

clics, Inc.). The reaction mixture was then left at room

temperature overnight in the dark and then applied to protein A

streamline resin equilibrated in HEPES, pH 7 before washing with

30 ml HEPES, pH 7 and elution in 0.25 ml fractions of 0.1 M

glycine/HCl pH 2) into tubes containing ammonium acetate (final

concentration and pH of fractions was 0.46 M ammonium

acetate, pH 5). The conjugated protein was analysed by ESI-MS

to confirm conjugation.

Conjugation of DOM26h-196-61, mIFNa2 and mIFNa2-
dAbs with NHS-DOTA

DOM26h-196-61 and mIFNa2 were dialysed into PBS (PAA

Laboratories GmbH, Pasching, Austria) while the mIFNa2-dAb

fusions were dialysed into 25 mM Na Acetate solution, pH 8.

NHS-DOTA (Macrocyclics, Inc.) was then added in a 4-fold

molar excess and reacted overnight at room temperature.

Conjugation solutions (except for mIFNa2) were then applied to

protein A columns equilibrated in, pH 7.4, before washing with

PBS, pH 7.4 and elution in 0.5 ml fractions of 0.1 M glycine/

HCl, pH 2, into tubes containing ammonium acetate (final

formulation of fractions was 0.46 M ammonium acetate, pH 5).

Liver Targeting of Interferon Alpha
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In the case of mIFNa2, the conjugation reaction was purified by

dialysis against 0.2 M ammonium acetate, pH 5.5. Conjugated

proteins were analysed by ESI-MS to confirm conjugation.

Surface plasmon resonance and B16-BlueTM assays were per-

formed to assess ASGPR binding and mIFNa2 activity, respec-

tively.

Radiolabelling of DOTA-protein conjugates and
radiochemical analysis

The general radiolabelling protocol was as follows; 40–60 ml

(26–50 MBq) of 111InCl3 in 0.05 M HCl, 8–12 ml (1/5th the

volume) of 1 M ammonium acetate, pH 4.5–5.5 (or in the case of

IFN-DOM26h-196-61, 120 ml 0.1 M MES, pH 5.1) and 12.5–

92.5 mg of protein was added to a low protein binding 1.5 ml

polypropylene tube. The solution was heated to 40uC for 1.5–

2.5 h and quenched with 0.1 M EDTA solution (1/20th reaction

volume). Radiochemical purity was determined using size exclu-

sion HPLC (SEC) using a YMC-Pack Diol-60 column (YMC

Europe GmbH, Germany), 30068.0 mm i.d., S-5 mm with a

mobile phase of 200 mM phosphate buffer, pH 6.8 and thin layer

chromatography (TLC), iTLC-SG (Varian Inc., CA) eluted with

0.1 M ammonium acetate, 50 mM EDTA, pH 5.5 or iTLC-SG

(pre-soaked in 2% (w/v) BSA in water and dried at 37uC) eluted

with 1:2:5 35% ammonia:ethanol:water. The reaction mixture was

then diluted with 0.1% (w/v) bovine serum albumin in PBS (BSA/

PBS) followed by filtration through a 0.22 mm filter.

MicroSPECT/CT imaging
Radiolabeled dAb or mIFNa2-dAb fusion proteins diluted with

BSA/PBS (10–17 MBq) were injected intravenously via the tail

vein into a single female BALB/c mouse (except in the case of
111In-DOTA-mIFNa2 where a female beige SCID was used).

Whole body SPECT images were obtained under isoflurane

anaesthesia at 3, 24 and 72-hrs (45-min each) using a Bioscan

NanoSPECT/CT four-head camera (Bioscan Inc. Washington)

fitted with 2 mm pinhole collimators in helical scanning mode (20

projections, 45-min scan) and CT images with a 45 kVP X-ray

source. Images were reconstructed using InVivoScope software

(Bioscan Inc).

Biodistribution studies in BALB/c mice
Radiolabel dAbs or mIFNa2-dAb fusion proteins diluted with

BSA/PBS (0.15–0.5 MBq, radiolabelling efficiency corrected

dose) were injected into female BALB/c mice (n = 4) via the tail

vein. After 3 hours, the animals were terminated and tissues and

organs of interest were collected, weighed and counted along with

appropriate standards in a gamma counter (1282 Compugamma

CS, LKB Wallac).

Results

Selections and affinity maturation
A series of ASGPR specific dAbs were selected from phage

libraries using recombinant ASGPR H1 subunit purified from

HEK293 culture supernatant. One clone, DOM26h-196, was

chosen for further affinity improvements based on expression,

selectivity/affinity for antigen and solution state properties (namely

monomeric in solution as determined by size exclusion chroma-

tography and melting temperature .55uC as determined by

differential scanning calorimetry). Following affinity maturation,

several DOM26h-196 derived dAbs were obtained that showed

specific binding to ASGPR H1 subunit by surface plasmon

resonance and ELISA (data not shown). DOM26h-196-61 dAb

(amino acid sequence shown in Figure 1A) showed high affinity

binding to the human ASGPR-H1 subunit (KD = 1 nM), as well as

high affinity binding to the murine antigen (KD = 4 nM). Due to its

human/mouse cross-reactivity this dAb was chosen as the

targeting fusion partner for the IFN payload. The isotype control

dAb, VHD2, in contrast demonstrated no binding activity to

human or murine ASGPR-H1.

When tested by flow cytometry for binding to ASGPR positive

and negative cell lines DOM26h-196-61 bound to the ASGPR

Figure 1. A – Sequence of DOM26h-196-61. Alignment of the primary sequence of the ASGPR specific dAb DOM26h-196-61 and the VHD2 isotype
control sequence. DOM26h-196-61 residues identical to the VHD2 isotype control sequence are represented by ‘.’ Residue numbering was determined
by the method of Kabat [34], with the residues contained within the three complementary determining regions (CDRs) underlined and in bold. In
CDR3 of DOM26h-196-61, the symbol ‘,’ has been used to facilitate alignment but does not represent a residue. B – Flow cytometry of liver targeting
dAbs. ASGPR specific DOM26h-196-61 dAb (solid line) and VHD2 isotype control dAb (dotted line) were tested for binding to ASGPR positive primary
human hepatocytes and the human hepatocarcinoma-derived cell line Huh7 by flow cytometry. Binding of DOM26h-196-61 to the ASGPR negative
human cell line U937 is also shown for comparison. Detection of bound dAbs was demonstrated using a mouse monoclonal antibody specific for
human VH domains and an Alexa 647 conjugated goat anti-mouse pAb. Staining of cells in the absence of dAb is also shown for comparison (shaded
histograms).
doi:10.1371/journal.pone.0057263.g001

Figure 2. SDS-PAGE analysis of mIFNa2-dAb fusion protein
purification. Purification on protein A Streamline resin from clarified
cell culture supernatant results in a single band of the expected
molecular mass of approximately 33 KDa. CL = clarified supernatant,
FT = flowthrough fraction, EL = eluted fraction.
doi:10.1371/journal.pone.0057263.g002
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positive cell line Huh7, with negligible binding to ASGPR negative

U937 cell line observed. In addition to binding ASGPR positive

cell lines DOM26h-196-61 also bound to primary human

hepatocytes (Figure 1B). This strongly suggests that the ASGPR

specific dAb DOM26h-196-61 specifically binds to native ASGPR

expressed on the surface of hepatocytes and hepatocyte derived

cell lines. As expected the VHD2 isotype control dAb did not bind

to any of the cells tested.

Expression and purification of mIFNa2-dAb fusion
proteins

The mIFNa2-dAb fusion proteins were expressed in the pTT5/

HEK293 mammalian expression system with expression levels

comparable to those of hIFNa2b- AlbudAbTM fusions described

previously [28]. A simple, one step purification procedure using

protein A streamline resin provided pure material, as determined

by SDS-PAGE (Figure 2), with typical yields of 20 mg protein

obtained per litre of culture supernatant.

Figure 3. Surface plasmon resonance analysis of ASGPR specific dAbs and mIFNa2-dAb fusion proteins. Murine ASGPR H1 antigen
immobilised on CM5 chip surface was used to analyse binding kinetics of DOM26h-196-61 and mIFNa2-DOM26h-196-61 injected over the chip
surface at a constant flow rate of 50 ml.min21. mIFNa2-VHD2 isotype control was also injected over the chip surface as a negative control for antigen
binding.
doi:10.1371/journal.pone.0057263.g003

Liver Targeting of Interferon Alpha
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When expressed as a genetic fusion to the C-terminus of

mIFNa2, the DOM26h-196-61 dAb showed no reduction in

affinity for ASGPR H1 as determined by surface plasmon

resonance assays. KD of the unmodified dAb was determined to

be 1 nM for the human antigen (data not shown) and 4 nM for the

mouse antigen (Figure 3). KD of the mIFNa2-DOM26h-196-61

fusion protein for mouse ASGPR H1 was 0.6 nM indicating no

detrimental effect on affinity of the dAb following fusion to

mIFNa2.

B16-BlueTM IFNa/b reporter cell assay
The potency of mIFNa2 and mIFNa2-dAb fusion proteins was

measured in the B16-BlueTM IFNa/b reporter gene assay

(Figure 4). The potency of the DOM26h-196-61 and VHD2

isotype control mIFNa2-dAb fusions (EC50 = 5.2 and 12.4 nM,

respectively) is similar in this assay to that of non-dAb fused

mIFNa2 (EC50 = 3.2 nM). These data therefore show that dAb

fusion to the C-terminus of mIFNa2 results in only a modest

decrease in potency of the IFN fusion partner, in the range 1.6–3.9

fold in our experiments.

Biodistribution and imaging of 111In-DOTA-DOM26h-196-
61 and 111In-DOTA-VHD2

DOTA conjugated dAbs were purified on protein A Streamline

resin as described above, which provides a measure of protein

functionality following conjugation. In addition DOTA conjugat-

ed DOM26h-196-61 was shown to be functional by BIAcore

analysis of ASGPR binding activity (data not shown). Thin layer

chromatography (TLC) analysis of the radiolabeled DOTA-

DOM26h-196-61 and VHD2 isotype control dAbs showed

efficient labelling of both antibodies, with minimal amounts

(,1%) of insoluble particulates present after filtration (data not

shown). Following tail vein injection of radiolabeled antibodies

biodistribution studies showed that 19.160.6% of the injected

dose (ID) of 111In-DOTA-DOM26h-196-61 remained in liver

after three hours compared to only 0.5560.07% ID/organ of the
111In-DOTA-VHD2 isotype control (Figure 5A). MicroSPECT/

CT imaging studies of 111In-DOTA-DOM26h-196-61 confirmed

uptake in liver with significant levels also observed in the kidneys,

most likely due to renal clearance of the antibody (Figure 5B). No

uptake was observed in any other tissue apart from bladder,

consistent with renal clearance of radiolabeled DOM26h-196-61.

In contrast, there was no visible uptake in liver of the VHD2

isotype control antibody. These data are therefore indicative of

specific hepatic uptake of DOM26h-196-61 as a result of ASGPR

binding in vivo.

Biodistribution and Imaging of 111In-DOTA-mIFNa2,
111In-DOTA-mIFNa2-DOM26h-196-61 and 111In-DOTA-
mIFNa2- VHD2 isotype control

DOTA conjugated mIFNa2 and mIFNa2-dAb fusions proteins

were shown to be functional in the B16 assay, with DOTA

conjugation apparently having minimal impact on EC50 values

obtained in this assay. In addition DOTA conjugated mIFNa2-

DOM26h-196-61 was shown to be functional by BIAcore analysis

of ASGPR binding activity (data not shown). TLC analysis of

radiolabeled DOTA-mIFNa2, DOTA-mIFNa2-DOM26h-196-

61 and DOTA-mIFNa2-VHD2 isotype control showed efficient

labelling of all three molecules, with minimal amounts (,1%) of

insoluble particulates present after filtration (data not shown).

Figure 4. In vitro activity of mIFNa2 formatted as dAb fusions. Activity of the mIFNa2-dAb fusion proteins was tested in the B16-BlueTM assay
and compared to unfused mIFNa2 standard. Error bars are not visible as they are smaller than the data points, but represent standard error of the
mean of 3 independent experiments. mIFNa2-DOM26h-196-61 (dashed line, closed circles) and mIFNa2-VHD2 isotype control (dotted line, closed
diamonds) showed comparable activity to the H6-mIFNa2 standard (solid line, closed squares), with only minor increases in the EC50.
doi:10.1371/journal.pone.0057263.g004
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When tested in the B16-BlueTM IFNa/b reporter gene assay the

DOTA-conjugated mIFNa2, mIFNa2-DOM26h-196-61 and

mIFNa2-VHD2 isotype control molecules were shown to retain

interferon activity at levels comparable to the unconjugated

proteins (data not shown). Similarly, SPR analysis of DOTA-

mIFNa2-DOM26h-196-61 showed that the conjugate retained

mouse and human ASGPR binding activity comparable to the

unconjugated protein (data not shown) indicating minimal impact

of DOTA conjugation on the affinity for antigen.

Following intravenous administration of radiolabeled com-

pounds biodistribution studies showed that at 3 hours after

injection significant hepatic uptake of both mIFNa2 and

mIFNa2-VHD2 isotype control was observed, with 24.960.7%

and 49.361.4% of the injected dose accumulating in liver

respectively (figure 6). This is presumably due in part to binding

of interferon receptor in vivo or hepatic clearance of mIFNa2, as

the effect was observed in the absence of a dAb fusion partner.
111In labelled DOTA-mIFNa2-DOM26h-196-61 shows extremely

high hepatic uptake, with 73.163.0% of the injected dose

observed in liver at 3 hours after intravenous administration.

Increased hepatic uptake of mIFNa2-dAb fusions compared to

mIFNa2 alone may be due in part to the increased molecular mass

of the fusion proteins, resulting in increased systemic exposure and

delayed clearance, whereas the increased hepatic uptake of 111In-

DOTA-mIFNa2-DOM26h-196-61 compared to that of 111In-

DOTA-mIFNa2-VHD2 isotype control is most likely due to

ASGPR binding of the fusion protein in vivo.

MicroSPECT/CT imaging studies confirm uptake of 111In-

DOTA-mIFNa2 in liver, with high levels in kidney and minimal

uptake in all other tissues (figure 7A) which is interesting

considering the ubiquity of IFNAR expression. By contrast the

images obtained following 111In-DOTA-mIFNa2-DOM26h-196-

61 administration shows higher signal in liver compared to kidney,

reflecting the increased hepatic targeting properties of this

molecule. It is clear, in agreement with the biodistribution data

in figure 6, from comparison of the images of animals injected with
111In-DOTA-mIFNa2-DOM26h-196-61 and 111In-DOTA-

mIFNa2-VHD2 isotype control that the liver-to-kidney ratio is

higher in animals injected with the liver-targeted fusion protein

(figure 7B), most likely as a direct result of 111In-DOTA-mIFNa2-

DOM26h-196-61 binding to ASGPR expressed on the surface of

hepatocytes.

Discussion

Targeting of therapeutic payloads to specific cells or tissues is an

attractive concept in terms of improving the safety and efficacy of

the therapeutic. Antibody based methods for payload delivery

have been described. For example, ASGPR single chain variable

fragments (scFvs) conjugated to immunotoxins show increased cell

killing in ASGPR expressing cell lines HepG2 and Huh7

compared to non-conjugated immunotoxin scFv fragments [27].

Here we demonstrate that domain antibodies specific to ASGPR

Figure 5. A – Quantitative analysis of ASGPR dAb biodistribution.
Quantitative analysis of 111In labelled dAb levels was carried out 3 hours
after intravenous administration in BALB/c mice via tail vein injection of
approximately 0.5 MBq radiolabelled dAb. Results show accumulation
of radiolabeled ASGPR dAb DOM26h-196-61 in mouse liver is
considerably higher than that observed with isotype control dAb. By
contrast minimal uptake of either ASGPR dAb DOM26h-196-61 or VHD2

isotype control dAb was observed in any other organ besides kidney.
Error bars shown represent standard deviation of the mean, n = 4. B– In
vivo imaging of ASGPR specific dAbs. Localisation of 111In labelled dAbs
in BALB/c mice at 3, 24 and 72 hours post injection. Images were
captured following intravenous administration of 14–15 MBq of
radiolabeled dAb via tail vein injection in BALB/c mice. Images show
that signal is observed in kidney and bladder with both dAb molecules,
whereas liver localisation is only observed with anti ASGPR VH dAb
DOM26h-196-61.
doi:10.1371/journal.pone.0057263.g005
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expressed exclusively on hepatocytes can be used to target delivery

of IFN to the liver.

Selection of ASGPR specific dAbs from phage libraries resulted

in a number of distinct and sequence diverse dAbs with a wide

range of affinities to the antigen. Following affinity maturation of

ASGPR dAbs, clone DOM26h-196-61 was found to have high

affinity for both human and mouse antigens, with 1 nM and 4 nM

equilibrium dissociation constants observed when binding the

human and mouse antigens respectively.

In order to assess binding to native ASGPR, which consists of

H1 homodimers, H1/H2 heterodimers and tetrameric H1

complexes, flow cytometry assays were carried out using detection

antibodies specific to human immunoglobulin heavy chain

variable domains. We show that the ASGPR specific clone

DOM26h-196-61 binds to primary human hepatocytes and the

human hepatoma derived cell line Huh7, which has been shown to

express ASGPR H1 subunit [29]. By contrast this antibody did not

bind to non ASGPR expressing cell lines such as U937, and the

VHD2 isotype control antibody did not bind to ASGPR positive

cell lines including Huh7. Taken together these data provide

evidence that DOM26h-196-61 binds specifically to cell surface

expressed ASGPR H1 subunits, though it is not clear whether the

antibody binds preferentially to distinct forms of ASGPR, for

example the heterodimeric H1/H2 complex.

Given that our aim of developing ASGPR specific dAbs was to

target therapeutically relevant payloads to the liver, we generated

a genetic fusion of mIFNa2 and DOM26h-196-61 which could be

easily expressed using the pTT-HEK mammalian cell culture

system and purified by employing a simple affinity based capture

method which utilises protein A coupled resins. The purified

mIFNa2- DOM26h-196-61 fusion protein was subsequently

shown to retain high levels of interferon activity in reporter gene

assays and affinity for ASGPR in surface plasmon resonance

analysis. ASGPR dAbs are therefore amenable to genetic fusion to

interferon, without significantly affecting the activity of either

fusion partner in vitro.

Natural ASGPR ligands have been shown to specifically

accumulate in liver in vivo following, for example, intravenous

administration of radio-iodinated asialorosomucoid in rats

[30],111In labelled asialofetuin in mice and rats [31] and liposomes

decorated with asialofetuin in mice [32]. Here we show, using

microSPECT/CT imaging and biodistribution studies, striking

differences between the distribution of the ASGPR specific dAb

DOM26h-196-61 and the VHD2 isotype control dAb following

radio labelling with 111In, with up to 20% of the injected dose of

DOM26h-196-61 distributing to the liver 3 hours after intrave-

nous administration. By contrast the VHD2 isotype control dAb

shows minimal uptake in liver, with an apparent 40 fold reduction

in liver uptake compared to animals injected with DOM26h-196-

Figure 6. Quantitative analysis of mIFNa2 and mIFNa2-dAb biodistribution. Quantitative analyses of 111In labelled mIFNa2 and fusion
protein levels were carried out 3 hours after intravenous administration in BALB/c mice via tail vein injection of approximately 0.5 MBq radiolabeled
compound. Results show accumulation of radiolabelled mIFNa2-dAb fusions in mouse liver is considerably higher than that observed with mIFNa2.
Data also shows increased hepatic accumulation of mIFNa2-DOM26h-196-61 compared to mIFNa2-DOM26h-VHD2 isotype control. Error bars shown
represent standard deviation of the mean, n = 4 (n = 3 in the case of mIFNa2).
doi:10.1371/journal.pone.0057263.g006
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61. Levels of both antibodies were low in all other tissues assayed,

with the exception of kidney and bladder. The significant amounts

of radiolabelled DOM26h-196-61 and VHD2 isotype control dAb

present in these tissues are not unexpected, as both antibodies are

significantly below the molecular mass of approximately 66 KDa

required to prevent renal clearance. Using immunohistochemistry

with well characterised monoclonal antibodies to human ASGPR

we saw no detectable expression in kidney, thyroid tissue or

peripheral blood mononuclear cells, whilst demonstrating high

levels of ASGPR expression in normal human liver tissue samples

(data not shown). Hence, these microSPECT/CT studies conclu-

sively demonstrate the liver targeting properties of ASGPR specific

dAbs following systemic intravenous administration.

Imaging and biodistribution studies show that murine interferon

alpha shows some degree of uptake in the liver in the absence of

any fusion partner, and is perhaps not unexpected as this may

reflect hepatic interferon receptor engagement responsible for

driving the antiviral activity of interferon alpha in vivo. Alterna-

tively these results may also be explained by hepatic clearance and

metabolism. Fusion of murine interferon alpha to the VHD2

isotype control antibody resulted in elevated hepatic uptake

compared to unfused interferon, which may in part be explained

by the increased size leading to delayed clearance of the fusion

protein, though detailed pharmacokinetic analysis will be required

to confirm this. Fusion of murine interferon alpha to the liver-

targeting dAb DOM26h-196-61 resulted in the highest level of

hepatic uptake of any of the molecules studied in this example,

approximately threefold greater than that observed with the

unfused mIFNa2 protein. Despite the fact that the mIFNa2-VHD2

isotype control dAb and mIFNa2-DOM26h-196-61 fusion pro-

teins were of comparable size, the hepatic uptake of mIFNa2-

DOM26h-196-61 was significantly higher, leading us to the

conclusion that this effect was a direct result of ASGPR binding on

the surface of hepatocytes, and that ASGPR specific domain

antibodies can be used to affect the biodistribution of therapeu-

tically relevant payloads such as type I interferons, increasing the

level of uptake in target organs and tissues. We therefore suggest

that targeting IFN to the liver for the treatment of hepatropic virus

infections such as HCV may result in increased efficacy through

delivering the dose to the site of action but also that the dose of

IFN could be reduced and the level of efficacy would be similar to

the current standard of care. Either way we predict there would be

improved safety implications following treatment with IFN.

There are documented examples of domain antibodies in

development to address a number of autoimmune and inflamma-

tory indications which would require repeat administrations of

subcutaneously administered drug, for example TNF specific

domain antibody constructs [33]. These molecules are currently

undergoing evaluation in phase II clinical trials, demonstrating the

utility of systemically administered domain antibodies in the

development of novel therapeutics with antagonist activity.

However as the approach described in this paper rather involves

use of domain antibodies targeted to a specific tissue type in order

to alter the distribution of agonist molecules in vivo this would merit

Figure 7. A– In vivo imaging of mIFNa2 and mIFNa2-DOM26h-196-61.
Localisation of 111In labelled mIFNa2 in beige SCID mouse and 111In
labelled mIFNa2-DOM26h-196-61 in BALB/c mouse at 3, 24 and
72 hours post injection. Images were obtained following intravenous
administration of 12–15 MBq of radiolabeled compound via tail vein
injection in BALB/c mice. Images show that signal is observed in liver,
kidney and bladder with IFN molecules. B– In vivo imaging of mIFNa2-

VHD2 and mIFNa2-DOM26h-196-61. Localisation of 111In labelled
mIFNa2-dAb fusions in BALB/c mice at 3, 24 and 72 hours post
injection. Images were obtained following intravenous administration
of 12–15 MBq of radiolabelled compound via tail vein injection in BALB/
c mice. Images show that signal is observed in liver, kidney and bladder
with both fusion proteins; however the extent of liver uptake is clearly
higher in the animal injected with mIFNa2-DOM26h-196-61, in
agreement with biodistribution data.
doi:10.1371/journal.pone.0057263.g007
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further studies being conducted to investigate detailed pharmaco-

kinetics and efficacy in preclinical models.
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