1,096 research outputs found

    Roles of GM-CSF in the Pathogenesis of Autoimmune Diseases: An Update.

    Get PDF
    Granulocyte-macrophage colony-stimulating factor (GM-CSF) was first described as a growth factor that induces the differentiation and proliferation of myeloid progenitors in the bone marrow. GM-CSF also has an important cytokine effect in chronic inflammatory diseases by stimulating the activation and migration of myeloid cells to inflammation sites, promoting survival of target cells and stimulating the renewal of effector granulocytes and macrophages. Because of these pro-cellular effects, an imbalance in GM-CSF production/signaling may lead to harmful inflammatory conditions. In this context, GM-CSF has a pathogenic role in autoimmune diseases that are dependent on cellular immune responses such as multiple sclerosis (MS) and rheumatoid arthritis (RA). Conversely, a protective role has also been described in other autoimmune diseases where humoral responses are detrimental such as myasthenia gravis (MG), Hashimoto\u27s thyroiditis (HT), inflammatory bowel disease (IBD), and systemic lupus erythematosus (SLE). In this review, we aimed for a comprehensive analysis of literature data on the multiple roles of GM-CSF in autoimmue diseases and possible therapeutic strategies that target GM-CSF production

    Emotional Labor in Mathematics: Reflections on Mathematical Communities, Mentoring Structures, and EDGE

    Full text link
    Terms such as "affective labor" and "emotional labor" pepper feminist critiques of the workplace. Though there are theoretical nuances between the two phrases, both kinds of labor involve the management of emotions; some acts associated with these constructs involve caring, listening, comforting, reassuring, and smiling. In this article I explore the different ways academic mathematicians are called to provide emotional labor in the discipline, thereby illuminating a rarely visible component of a mathematical life in the academy. Underlying this work is my contention that a conceptualization of labor involved in managing emotions is of value to the project of understanding the character, values, and boundaries of such a life. In order to investigate the various dimensions of emotional labor in the context of academic mathematics, I extend the basic framework of Morris and Feldman [33] and then apply this extended framework to the mathematical sciences. Other researchers have mainly focused on the negative effects of emotional labor on a laborer's physical, emotional, and mental health, and several examples in this article align with this framing. However, at the end of the article, I argue that mathematical communities and mentoring structures such as EDGE help diminish some of the negative aspects of emotional labor while also accentuating the positives.Comment: Revised version to appear in the upcoming volume A Celebration of EDGE, edited by Sarah Bryant, Amy Buchmann, Susan D'Agostino, Michelle Craddock Guinn, and Leona Harri

    A herbivore tag-and-trace system reveals contact- and density-dependent repellence of a root toxin

    Get PDF
    Foraging behavior of root feeding organisms strongly affects plant-environment-interactions and ecosystem processes. However, the impact of plant chemistry on root herbivore movement in the soil is poorly understood. Here, we apply a simple technique to trace the movement of soil-dwelling insects in their habitats without disturbing or restricting their interactions with host plants. We tagged the root feeding larvae of Melolontha melolontha with a copper ring and repeatedly located their position in relation to their preferred host plant, Taraxacum officinale, using a commercial metal detector. This method was validated and used to study the influence of the sesquiterpene lactone taraxinic acid β-D-glucopyranosyl ester (TA-G) on the foraging of M. melolontha. TA-G is stored in the latex of T. officinale and protects the roots from herbivory. Using behavioral arenas with TA-G deficient and control plants, we tested the impact of physical root access and plant distance on the effect of TA-G on M. melolontha. The larvae preferred TA-G deficient plants to control plants, but only when physical root contact was possible and the plants were separated by 5 cm. Melolontha melolontha showed no preference for TA-G deficient plants when the plants were grown 15 cm apart, which may indicate a trade-off between the cost of movement and the benefit of consuming less toxic food. We demonstrate that M. melolontha integrates host plant quality and distance into its foraging patterns and suggest that plant chemistry affects root herbivore behavior in a plant-density dependent manner. © 2017, Springer Science+Business Media New York

    Immunoregulation of bovine macrophages by factors in the salivary glands of Rhipicephalus microplus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Alternative strategies are required to control the southern cattle tick, <it>Rhipicephalus microplus</it>, due to evolving resistance to commercially available acaricides. This invasive ectoparasite is a vector of economically important diseases of cattle such as bovine babesiosis and anaplasmosis. An understanding of the biological intricacies underlying vector-host-pathogen interactions is required to innovate sustainable tick management strategies that can ultimately mitigate the impact of animal and zoonotic tick-borne diseases. Tick saliva contains molecules evolved to impair host innate and adaptive immune responses, which facilitates blood feeding and pathogen transmission. Antigen presenting cells are central to the development of robust T cell responses including Th1 and Th2 determination. In this study we examined changes in co-stimulatory molecule expression and cytokine response of bovine macrophages exposed to salivary gland extracts (SGE) obtained from 2-3 day fed, pathogen-free adult <it>R. microplus</it>.</p> <p>Methods</p> <p>Peripheral blood-derived macrophages were treated for 1 hr with 1, 5, or 10 μg/mL of SGE followed by 1, 6, 24 hr of 1 μg/mL of lipopolysaccharide (LPS). Real-time PCR and cytokine ELISA were used to measure changes in co-stimulatory molecule expression and cytokine response.</p> <p>Results</p> <p>Changes were observed in co-stimulatory molecule expression of bovine macrophages in response to <it>R</it>. <it>microplus </it>SGE exposure. After 6 hrs, CD86, but not CD80, was preferentially up-regulated on bovine macrophages when treated with 1 μg/ml SGE and then LPS, but not SGE alone. At 24 hrs CD80, CD86, and CD69 expression was increased with LPS, but was inhibited by the addition of SGE. SGE also inhibited LPS induced upregulation of TNFα, IFNγ and IL-12 cytokines, but did not alter IL-4 or CD40 mRNA expression.</p> <p>Conclusions</p> <p>Molecules from the salivary glands of adult <it>R. microplus </it>showed bimodal concentration-, and time-dependent effects on differential up-regulation of CD86 in bovine macrophages activated by the TLR4-ligand, LPS. Up regulation of proinflammatory cytokines and IL-12, a Th1 promoting cytokine, were inhibited in a dose-dependent manner. The co-stimulatory molecules CD80, as well as the cell activation marker, CD69, were also suppressed in macrophages exposed to SGE. Continued investigation of the immunomodulatory factors will provide the knowledge base to research and develop therapeutic or prophylactic interventions targeting <it>R. microplus</it>-cattle interactions at the blood-feeding interface.</p

    Development of Proteomics-Based Fungicides: New Strategies for Environmentally Friendly Control of Fungal Plant Diseases

    Get PDF
    Proteomics has become one of the most relevant high-throughput technologies. Several approaches have been used for studying, for example, tumor development, biomarker discovery, or microbiology. In this “post-genomic” era, the relevance of these studies has been highlighted as the phenotypes determined by the proteins and not by the genotypes encoding them that is responsible for the final phenotypes. One of the most interesting outcomes of these technologies is the design of new drugs, due to the discovery of new disease factors that may be candidates for new therapeutic targets. To our knowledge, no commercial fungicides have been developed from targeted molecular research, this review will shed some light on future prospects. We will summarize previous research efforts and discuss future innovations, focused on the fight against one of the main agents causing a devastating crops disease, fungal phytopathogens
    corecore