257 research outputs found

    Analysis of unbound plasma concentration of oxcarbazepine and the 10-hydroxycarbazepine enantiomers by liquid chromatography with tandem mass spectrometry in healthy volunteers

    Get PDF
    This study describes the development and validation of a method for the analysis of unbound plasma concentrations of oxcarbazepine (OXC) and of the enantiomers of its active metabolite 10-hydroxycarbazepine (MHD) [S-(+)- and R-(−)-MHD] using liquid chromatography with tandem mass spectrometry (LC–MS/MS). Additionally, the free fraction of the drug is described in healthy volunteers (n = 12) after the oral administration of 300 mg OXC/12 h for 5 days. Plasma aliquots of 200 μL were submitted to ultrafiltration procedure and 50 μL of the ultrafiltrate were extracted with a mixture of tert-butyl methyl ether:dichloromethane (2:1, v/v). OXC and the MHD enantiomers were separated on a OD-H chiral phase column. The method was linear in the range of 4.0–2.0 μg/mL for OXC and of 20.0–6.0 μg/mL plasma for the MHD enantiomers. The limit of quantification was 4 ng for OXC and 20 ng for each MHD enantiomer/mL plasma. The intra- and inter-day precision and inaccuracy were less than 15%. The free fraction at the time of peak plasma concentration of OXC was 0.27 for OXC, 0.37 for S-(+)-MHD and 0.42 for R-(−)-MHD. Enantioselectivity in the free fraction of MHD was observed, with a higher proportion of R-(−)-MHD compared to S-(+)-MHD

    Population pharmacokinetics of oxcarbazepine and its metabolite 10-hydroxycarbazepine in healthy subjects

    Get PDF
    Oxcarbazepine is indicated for the treatment of partial or generalised tonic-clonic seizures. Most of the absorbed oxcarbazepine is converted into its active metabolite, 10-hydroxycarbazepine (MHD), which can exist as R-(-)- and S-(+)-MHD enantiomers. Here we describe the influence of the P-glycoprotein (P-gp) inhibitor verapamil, on the disposition of oxcarbazepine and MHD enantiomers, both of which are P-gp substrates. Healthy subjects (n=12) were randomised to oxcarbazepine or oxcarbazepine combined with verapamil at doses of 300mg b.i.d. and 80mg t.i.d., respectively. Blood samples (n=185) were collected over a period of 12h post oxcarbazepine dose. An integrated PK model was developed using nonlinear mixed effects modelling using a meta-analytical approach. The pharmacokinetics of oxcarbazepine was described by a two-compartment model with absorption transit compartments and first-order elimination. The concentration-time profiles of both MHD enantiomers were characterised by a one-compartment distribution model. Clearance estimates (95% CI) were 84.9L/h (69.5-100.3) for oxcarbazepine and 2.0L/h (1.9-2.1) for both MHD enantiomers. The volume of distribution was much larger for oxcarbazepine (131L (97-165)) as compared to R-(-)- and S-(+)-MHD (23.6L (14.4-32.8) vs. 31.7L (22.5-40.9), respectively). Co-administration of verapamil resulted in a modest increase of the apparent bioavailability of oxcarbazepine by 12% (10-28), but did not affect parent or metabolite clearances. Despite the evidence of comparable systemic levels of OXC and MHD following administration of verapamil, differences in brain exposure to both moieties cannot be excluded after P-glycoprotein inhibition

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    X-ray emission from the Sombrero galaxy: discrete sources

    Get PDF
    We present a study of discrete X-ray sources in and around the bulge-dominated, massive Sa galaxy, Sombrero (M104), based on new and archival Chandra observations with a total exposure of ~200 ks. With a detection limit of L_X = 1E37 erg/s and a field of view covering a galactocentric radius of ~30 kpc (11.5 arcminute), 383 sources are detected. Cross-correlation with Spitler et al.'s catalogue of Sombrero globular clusters (GCs) identified from HST/ACS observations reveals 41 X-rays sources in GCs, presumably low-mass X-ray binaries (LMXBs). We quantify the differential luminosity functions (LFs) for both the detected GC and field LMXBs, whose power-low indices (~1.1 for the GC-LF and ~1.6 for field-LF) are consistent with previous studies for elliptical galaxies. With precise sky positions of the GCs without a detected X-ray source, we further quantify, through a fluctuation analysis, the GC LF at fainter luminosities down to 1E35 erg/s. The derived index rules out a faint-end slope flatter than 1.1 at a 2 sigma significance, contrary to recent findings in several elliptical galaxies and the bulge of M31. On the other hand, the 2-6 keV unresolved emission places a tight constraint on the field LF, implying a flattened index of ~1.0 below 1E37 erg/s. We also detect 101 sources in the halo of Sombrero. The presence of these sources cannot be interpreted as galactic LMXBs whose spatial distribution empirically follows the starlight. Their number is also higher than the expected number of cosmic AGNs (52+/-11 [1 sigma]) whose surface density is constrained by deep X-ray surveys. We suggest that either the cosmic X-ray background is unusually high in the direction of Sombrero, or a distinct population of X-ray sources is present in the halo of Sombrero.Comment: 11 figures, 5 tables, ApJ in pres

    Azimuthal anisotropy of charged particles at high transverse momenta in PbPb collisions at sqrt(s[NN]) = 2.76 TeV

    Get PDF
    The azimuthal anisotropy of charged particles in PbPb collisions at nucleon-nucleon center-of-mass energy of 2.76 TeV is measured with the CMS detector at the LHC over an extended transverse momentum (pt) range up to approximately 60 GeV. The data cover both the low-pt region associated with hydrodynamic flow phenomena and the high-pt region where the anisotropies may reflect the path-length dependence of parton energy loss in the created medium. The anisotropy parameter (v2) of the particles is extracted by correlating charged tracks with respect to the event-plane reconstructed by using the energy deposited in forward-angle calorimeters. For the six bins of collision centrality studied, spanning the range of 0-60% most-central events, the observed v2 values are found to first increase with pt, reaching a maximum around pt = 3 GeV, and then to gradually decrease to almost zero, with the decline persisting up to at least pt = 40 GeV over the full centrality range measured.Comment: Replaced with published version. Added journal reference and DO

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    Stressed out symbiotes:hypotheses for the influence of abiotic stress on arbuscular mycorrhizal fungi

    Get PDF
    Abiotic stress is a widespread threat to both plant and soil communities. Arbuscular mycorrhizal (AM) fungi can alleviate effects of abiotic stress by improving host plant stress tolerance, but the direct effects of abiotic stress on AM fungi are less well understood. We propose two hypotheses predicting how AM fungi will respond to abiotic stress. The stress exclusion hypothesis predicts that AM fungal abundance and diversity will decrease with persistent abiotic stress. The mycorrhizal stress adaptation hypothesis predicts that AM fungi will evolve in response to abiotic stress to maintain their fitness. We conclude that abiotic stress can have effects on AM fungi independent of the effects on the host plant. AM fungal communities will change in composition in response to abiotic stress, which may mean the loss of important individual species. This could alter feedbacks to the plant community and beyond. AM fungi will adapt to abiotic stress independent of their host plant. The adaptation of AM fungi to abiotic stress should allow the maintenance of the plant-AM fungal mutualism in the face of changing climates. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00442-016-3673-7) contains supplementary material, which is available to authorized users
    corecore