19 research outputs found

    Effective lagrangian for the tbH^+ interaction in the MSSM and charged Higgs phenomenology

    Full text link
    In the framework of a 2HDM effective lagrangian for the MSSM, we analyse important phenomenological aspects associated with quantum soft SUSY-breaking effects that modify the relation between the bottom mass and the bottom Yukawa coupling. We derive a resummation of the dominant supersymmetric corrections for large values of \tb to all orders in perturbation theory. With the help of the operator product expansion we also perform the resummation of the leading and next-to-leading logarithms of the standard QCD corrections. We use these resummation procedures to compute the radiative corrections to the \tbH, \Htb decay rates. In the large \tb regime, we derive simple formulae embodying all the dominant contributions to these decay rates and we compute the corresponding branching ratios. We show, as an example, the effect of these new results on determining the region of the \mH--\tb plane excluded by the Tevatron searches for a supersymmetric charged Higgs boson in top quark decays, as a function of the MSSM parameter space.Comment: 33 pages, LaTeX, 17 figures, revised version submitted to Nuc. Phys.

    Probing exotic phenomena at the interface of nuclear and particle physics with the electric dipole moments of diamagnetic atoms: A unique window to hadronic and semi-leptonic CP violation

    Full text link
    The current status of electric dipole moments of diamagnetic atoms which involves the synergy between atomic experiments and three different theoretical areas -- particle, nuclear and atomic is reviewed. Various models of particle physics that predict CP violation, which is necessary for the existence of such electric dipole moments, are presented. These include the standard model of particle physics and various extensions of it. Effective hadron level combined charge conjugation (C) and parity (P) symmetry violating interactions are derived taking into consideration different ways in which a nucleon interacts with other nucleons as well as with electrons. Nuclear structure calculations of the CP-odd nuclear Schiff moment are discussed using the shell model and other theoretical approaches. Results of the calculations of atomic electric dipole moments due to the interaction of the nuclear Schiff moment with the electrons and the P and time-reversal (T) symmetry violating tensor-pseudotensor electron-nucleus are elucidated using different relativistic many-body theories. The principles of the measurement of the electric dipole moments of diamagnetic atoms are outlined. Upper limits for the nuclear Schiff moment and tensor-pseudotensor coupling constant are obtained combining the results of atomic experiments and relativistic many-body theories. The coefficients for the different sources of CP violation have been estimated at the elementary particle level for all the diamagnetic atoms of current experimental interest and their implications for physics beyond the standard model is discussed. Possible improvements of the current results of the measurements as well as quantum chromodynamics, nuclear and atomic calculations are suggested.Comment: 46 pages, 19 tables and 16 figures. A review article accepted for EPJ

    Search for new physics in events with opposite-sign leptons, jets, and missing transverse energy in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    A search is presented for physics beyond the standard model (BSM) in final states with a pair of opposite-sign isolated leptons accompanied by jets and missing transverse energy. The search uses LHC data recorded at a center-of-mass energy sqrt(s) = 7 TeV with the CMS detector, corresponding to an integrated luminosity of approximately 5 inverse femtobarns. Two complementary search strategies are employed. The first probes models with a specific dilepton production mechanism that leads to a characteristic kinematic edge in the dilepton mass distribution. The second strategy probes models of dilepton production with heavy, colored objects that decay to final states including invisible particles, leading to very large hadronic activity and missing transverse energy. No evidence for an event yield in excess of the standard model expectations is found. Upper limits on the BSM contributions to the signal regions are deduced from the results, which are used to exclude a region of the parameter space of the constrained minimal supersymmetric extension of the standard model. Additional information related to detector efficiencies and response is provided to allow testing specific models of BSM physics not considered in this paper.Comment: Replaced with published version. Added journal reference and DO

    Prospects for e+e- physics at Frascati between the phi and the psi

    Get PDF
    We present a detailed study, done in the framework of the INFN 2006 Roadmap, of the prospects for e+e- physics at the Frascati National Laboratories. The physics case for an e+e- collider running at high luminosity at the phi resonance energy and also reaching a maximum center of mass energy of 2.5 GeV is discussed, together with the specific aspects of a very high luminosity tau-charm factory. Subjects connected to Kaon decay physics are not discussed here, being part of another INFN Roadmap working group. The significance of the project and the impact on INFN are also discussed. All the documentation related to the activities of the working group can be found in http://www.roma1.infn.it/people/bini/roadmap.html.Comment: INFN Roadmap Report: 86 pages, 25 figures, 9 table

    Experimental progress in positronium laser physics

    Get PDF

    A Logical Framework to Deal with Variability

    No full text
    We present a logical framework that is able to deal with variability in product family descriptions. The temporal logic MHML is based on the classical Hennessyâ\u80\u93Milner logic with Until and we interpret it over Modal Transition Systems (MTSs). MTSs extend the classical notion of Labelled Transition Systems by distinguishing possible (may) and required (must) transitions: these two types of transitions are useful to describe variability in behavioural descriptions of product families. This leads to a novel deontic interpretation of the classical modal and temporal operators, which allows the expression of both constraints over the products of a family and constraints over their behaviour in a single logical framework. Finally, we sketch model-checking algorithms to verify MHML formulae as well as a way to derive correct products from a product family description
    corecore