59 research outputs found

    A genome-wide scan for common alleles affecting risk for autism

    Get PDF
    Although autism spectrum disorders (ASDs) have a substantial genetic basis, most of the known genetic risk has been traced to rare variants, principally copy number variants (CNVs). To identify common risk variation, the Autism Genome Project (AGP) Consortium genotyped 1558 rigorously defined ASD families for 1 million single-nucleotide polymorphisms (SNPs) and analyzed these SNP genotypes for association with ASD. In one of four primary association analyses, the association signal for marker rs4141463, located within MACROD2, crossed the genome-wide association significance threshold of P < 5 × 10−8. When a smaller replication sample was analyzed, the risk allele at rs4141463 was again over-transmitted; yet, consistent with the winner's curse, its effect size in the replication sample was much smaller; and, for the combined samples, the association signal barely fell below the P < 5 × 10−8 threshold. Exploratory analyses of phenotypic subtypes yielded no significant associations after correction for multiple testing. They did, however, yield strong signals within several genes, KIAA0564, PLD5, POU6F2, ST8SIA2 and TAF1C

    Mucormycosis: an emerging disease?

    Get PDF
    ABSTRACTMucormycosis is the third invasive mycosis in order of importance after candidiasis and aspergillosis and is caused by fungi of the class Zygomycetes. The most important species in order of frequency is Rhizopus arrhizus (oryzae). Identification of the agents responsible for mucormycosis is based on macroscopic and microscopic morphological criteria, carbohydrate assimilation and the maximum temperature compatible with its growth. The incidence of mucormycosis is approximately 1.7 cases per 1000 000 inhabitants per year, and the main risk-factors for the development of mucormycosis are ketoacidosis (diabetic or other), iatrogenic immunosuppression, use of corticosteroids or deferoxamine, disruption of mucocutaneous barriers by catheters and other devices, and exposure to bandages contaminated by these fungi. Mucorales invade deep tissues via inhalation of airborne spores, percutaneous inoculation or ingestion. They colonise a high number of patients but do not cause invasion. Mucormycosis most commonly manifests in the sinuses (39%), lungs (24%), skin (19%), brain (9%), and gastrointestinal tract (7%), in the form of disseminated disease (6%), and in other sites (6%). Clinical diagnosis of mucormycosis is difficult, and is often made at a late stage of the disease or post-mortem. Confirmation of the clinical form requires the combination of symptoms compatible with histological invasion of tissues. The probable diagnosis of mucormycosis requires the combination of various clinical data and the isolation in culture of the fungus from clinical samples. Treatment of mucormycosis requires a rapid diagnosis, correction of predisposing factors, surgical resection, debridement and appropriate antifungal therapy. Liposomal amphotericin B is the therapy of choice for this condition. Itraconazole is considered to be inappropriate and there is evidence of its failure in patients suffering from mucormycosis. Voriconazole is not active in vitro against Mucorales, and failed when used in vivo. Posaconazole and ravuconazole have good activity in vitro. The overall rate of mortality of mucormycosis is approximately 40%

    Pannus spumosus (Chroococcales, Cyanoprocaryota) from Lake Mikri Prespa, Greece

    No full text

    Sepiapterin reductase deficiency in a 2-year-old girl with incomplete response to treatment during short-term follow-up

    Full text link
    Sepiapterin reductase (SR) catalyses the last step in the tetrahydrobiopterin biosynthesis pathway; it converts 6-pyruvoyl-tetrahydropterin (6-PTP) to BH(4) in an NADPH-dependent reaction. SR deficiency is a very rare autosomal recessive disorder with normal phenylalanine (Phe) concentration in blood and diagnostic abnormalities are detected in CSF. We present a 16-month-old girl with SR deficiency. From the newborn period she presented with an adaptation regulatory disorder. At the age of 3 months, abnormal eye movements with dystonic signs and at 4.5 months psychomotor retardation were noticed. Since that time axial hypotonia with limb spasticity (or rather delayed reflex development), gastro-oesophageal reflux and fatigue at the end of the day has been observed. Brain MRI was normal; EEG was without epileptiform discharges. Analysis of biogenic amine metabolites in CSF at the age of 16 months showed very low HVA and 5-HIAA concentrations. Analysis of CSF pterins revealed strongly elevated dihydrobiopterin (BH(2)), slightly elevated neopterin and elevated sepiapterin levels. Plasma and CSF amino acids concentrations were normal. A phenylalanine loading test showed increased Phe after 1 h, 2 h and 4 h and very high Phe/Tyr ratios. SR deficiency was confirmed in fibroblasts and a novel homozygous g.1330C>G (p.N127K) SPR mutation was identified. On L: -dopa and then additionally 5-hydroxytryptophan, the girl showed slow but remarkable progress in motor and intellectual ability. Now, at the age of 3 years, she is able to sit; expressive speech is delayed (to 1 1/2 years), passive speech is well developed. Her visual-motor skills, eye-hand coordination and social development correspond to the age of 2 1/2 years

    A phenotypic high-content, high-throughput screen identifies inhibitors of NLRP3 inflammasome activation

    No full text
    Inhibition of the NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome has recently emerged as a promising therapeutic target for several inflammatory diseases. After priming and activation by inflammation triggers, NLRP3 forms a complex with apoptosis-associated speck-like protein containing a CARD domain (ASC) followed by formation of the active inflammasome. Identification of inhibitors of NLRP3 activation requires a well-validated primary high-throughput assay followed by the deployment of a screening cascade of assays enabling studies of structure–activity relationship, compound selectivity and efficacy in disease models. We optimized a NLRP3-dependent fluorescent tagged ASC speck formation assay in murine immortalized bone marrow-derived macrophages and utilized it to screen a compound library of 81,000 small molecules. Our high-content screening assay yielded robust assay metrics and identified a number of inhibitors of NLRP3-dependent ASC speck formation, including compounds targeting HSP90, JAK and IKK-β. Additional assays to investigate inflammasome priming or activation, NLRP3 downstream effectors such as caspase-1, IL-1β and pyroptosis form the basis of a screening cascade to identify NLRP3 inflammasome inhibitors in drug discovery programs
    corecore