2,559 research outputs found

    Design and simulation of a petcoke gasification polygeneration plant integrated with a bitumen extraction and upgrading facility and net energy analysis

    Get PDF
    The final publication is available at Elsevier via http://dx.doi.org/10.1016/j.energy.2017.09.072 © 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/The in-situ extraction of bitumen from oil sands, particularly steam assisted gravity drainage, has been the fastest growing production technology in the industry. Integrated with upgrading operations to enhance the fuel quality, the process consumes significant amounts of energy, which are currently mostly derived from burning natural gas. On the other hand, considerable amounts of petroleum coke residues are generated in the refineries. This petcoke ends up stockpiled as a waste byproduct with associated environmental concerns. The aim of this study is to evaluate the feasibility of integrating a petroleum coke residue gasification plant to the energy infrastructure of an integrated SAGD/upgrading facility. The petcoke gasification process is specifically designed to fulfill the demands of of a facility processing 112,500 barrels per day of Athabasca bitumen. Two plant configurations are compared, one without and one with CO2 capture and storage. The gasification-based polygeneration plant is modeled with the Aspen Plus flowsheeting software. Two levels of energy demands (i.e. high and low energy scenarios), reflecting the range of variability in the energy requirements of extraction and upgrading operations (e.g. steam to oil ratio), are considered. The net efficiency for polygeneration plant was determined to be in the range of 48 – 58%. The gasification of approximately 190 t/h of petroleum coke is required to achieve the power, thermal and hydrogen demands. The incorporation of carbon capture imposes significant energy penalties, which requires the addition of natural gas fueled gas turbines to meet the power requirements

    Cholesterol Serum Levels and Use of Statins in Graves' Orbitopathy: A New Starting Point for the Therapy.

    Get PDF
    Graves' Orbitopathy (GO) is the most frequent extrathyroidal manifestation of Graves' disease (GD). Its ultimate cause remains unclear, but it is commonly considered an autoimmune disorder due to self recognition of autoantigens constitutively expressed by orbital fibroblasts (OFs), and thyroid epithelial cells. High dose intravenous glucocorticoids (ivGC) are the most commonly used treatment for moderately severe and active GO. However, based on the complex pathogenesis of GO, a number of factors may have a protective and maybe a therapeutic role. The use of other medications improving the effect of GC may increase the overall effectiveness of the therapy and reduce GC doses, thereby limiting side effects. Recently, a possible protective role of 3-hydroxy-3-methylglutaryl-coenzyme reductase inhibitors, the so-called statins, and perhaps of lowering cholesterol levels, has been proposed. Thus, statins have been reported to be associated with a reduced frequency of GO in GD patients and in recent cross-sectional and retrospective studies a significant correlation was found between the occurrence of GO and both total and LDL-cholesterol in patients with a GD of relatively recent onset, suggesting a role of cholesterol in the development of GO. Moreover, a correlation was found between the GO clinical activity score and total as well as LDL-cholesterol in untreated GO patients, depending on GO duration, indicating a role of cholesterol on GO activity. Therefore, statin treatment may be beneficial for GO. Here we review this subject, which offers new therapeutic perspectives for patients with GO

    Concepts and characteristics of the 'COST Reference Microplasma Jet'

    Get PDF
    Biomedical applications of non-equilibrium atmospheric pressure plasmas have attracted intense interest in the past few years. Many plasma sources of diverse design have been proposed for these applications, but the relationship between source characteristics and application performance is not well-understood, and indeed many sources are poorly characterized. This circumstance is an impediment to progress in application development. A reference source with well-understood and highly reproducible characteristics may be an important tool in this context. Researchers around the world should be able to compare the characteristics of their own sources and also their results with this device. In this paper, we describe such a reference source, developed from the simple and robust micro-scaled atmospheric pressure plasma jet (μ-APPJ) concept. This development occurred under the auspices of COST Action MP1101 'Biomedical Applications of Atmospheric Pressure Plasmas'. Gas contamination and power measurement are shown to be major causes of irreproducible results in earlier source designs. These problems are resolved in the reference source by refinement of the mechanical and electrical design and by specifying an operating protocol. These measures are shown to be absolutely necessary for reproducible operation. They include the integration of current and voltage probes into the jet. The usual combination of matching unit and power supply is replaced by an integrated LC power coupling circuit and a 5 W single frequency generator. The design specification and operating protocol for the reference source are being made freely available

    White light emitting silsesquioxane based materials: The importance of a ligand with rigid and directional arms

    Get PDF
    The synthesis of a novel polyhedral oligomeric silsesquioxane functionalized with eight rigid and directional terpyridine-based arms (Ter-POSS) was successfully achieved via a Sonogashira reaction. The POSS based ligand was extensively characterized using different techniques including 1H, 13C and 29Si NMR as well as UV-Vis and fluorescence spectroscopies. The assembly of these nano-caged units in the presence of different transition metal ions (Fe2+, Zn2+ and Cu2+) as well as of a cation from the lanthanides (Eu3+) was investigated using absorption and emission spectroscopies. The final materials display an evident emission in different regions of the visible spectrum as a function of the cation employed. Additional insights into the structural organization of Ter-POSS in the presence of metal cations were obtained via molecular mechanics and molecular dynamics simulations. The polymeric material resulting from the complexation with europium displays a white light emission ascribed to the presence of combined contributions from the blue, green and red regions. The final self-assembled organizations display an increased quantum yield with the highest value (29.6%) obtained in the presence of Zn2+. Moreover, the white-light emitting europium-based nanostructure exhibits one of the highest quantum yields reported in the literature for similar solids

    Radical defects modulate the photocatalytic response in 2D-graphitic carbon nitride

    Get PDF
    Graphitic carbon nitride (gCN) is an important heterogeneous metal-free catalytic material. Thermally induced post-synthetic modifications, such as amorphization and/or reduction, were recently used to enhance the photocatalytic response of these materials for certain classes of organic transformations, with structural defects possibly playing an important role. The knowledge of how these surface modifications modulate the photocatalytic response of gCN is therefore not only interesting from a fundamental point of view, but also necessary for the development and/or tuning of metal-free gCN systems with superior photo-catalytic properties. Herein, employing density functional theory calculations and combining both the periodic and molecular approaches, in conjunction with experimental EPR measurements, we demonstrate that different structural defects on the gCN surface generate distinctive radical defect states localized within the electronic bandgap, with only those correlated with amorphous and reduced gCN structures being photo-active. To this end, we (i) model defective gCN surfaces containing radical defect states; (ii) assess the interactions of these defects with the radical precursors involved in the photo-driven alkylation of electron-rich aromatic compounds (namely perfluoroalkyl iodides); and (iii) describe the photo-chemical processes triggering the initial step of that reaction at the gCN surface. We provide a coherent structure/photo-catalytic property relationship on defective gCN surfaces, elaborating how only specific defect types act as binding sites for the perfluoroalkyl iodide reagent and can favor a photo-induced charge transfer from the gCN surface to the molecule, thus triggering the perfluoroalkylation reaction

    Towards standards for the evaluation of active back-support exoskeletons to assist lifting task

    Get PDF
    Back-support exoskeletons have been recently proposed to reduce the risk of injuries for workers performing repetitive lifting tasks. Appropriate standards for their evaluation do not exist, but their definition would promote large-scale adoption in workplaces. This paper presents relevant standards and evaluation metrics as applied to similar devices and discusses their applicability to back-support exoskeletons, with the final goal to propose a reference methodology

    Randomized placebo-controlled trial assessing the effect of 24-week fenofibrate therapy on circulating markers of abdominal aortic aneurysm: Outcomes from the FAME-2 trial

    Get PDF
    Background-There is no drug therapy for abdominal aortic aneurysm (AAA). FAME-2 (Fenofibrate in the Management of Abdominal Aortic Aneurysm 2) was a placebo-controlled randomized trial designed to assess whether administration of 145 mg of fenofibrate/d for 24 weeks favorably modified circulating markers of AAA. Methods and Results-Patients with AAAs measuring 35 to 49 mm and no contraindication were randomized to fenofibrate or identical placebo. The primary outcome measures were the differences in serum osteopontin and kallistatin concentrations between groups. Secondary analyses compared changes in the circulating concentration of AAA-associated proteins, and AAA growth, between groups using multivariable linear mixed-effects modeling. A total of 140 patients were randomized to receive fenofibrate (n=70) or placebo (n=70). By the end of the study 3 (2.1%) patients were lost to follow-up and 18 (12.9%) patients had ceased trial medication. A total of 85% of randomized patients took =80% of allocated tablets and were deemed to have complied with the medication regimen. Patients’ allocated fenofibrate had expected reductions in serum triglycerides and estimated glomerular filtration rate, and increases in serum homocysteine. No differences in serum osteopontin, kallistatin, or AAA growth were observed between groups. Conclusions-Administering 145 mg/d of fenofibrate for 24 weeks did not significantly reduce serum concentrations of osteopontin and kallistatin concentrations, or rates of AAA growth in this trial. The findings do not support the likely benefit of fenofibrate as a treatment for patients with small AAAs. Clinical Trial Registration-URL: www.anzctr.org.au. Unique identifier: ACTRN12613001039774

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13
    corecore