199 research outputs found
The Ecological and Ethical Consumption Development Prospects in Poland Compared with the Western European Countries
An overview of the Western European literature shows that one of the most distinct trends in consumption that has been noted in the recent years is globally increasing environmental and social awareness. The issue of consumers' behaviours and attitudes towards "socially responsible products" has been gaining importance in Polish economy as well. This article evaluates the development prospects of ethical and ecological consumption in Poland vis-à-vis Western European countries. The comparative analysis being part of the article utilizes primary sources of information, i.e. interviews with a representative sample of Polish adults, as well as secondary sources of information. A factor analysis or, more precisely, a principal component analysis, allowed dividing Polish consumers into groups that were typologically homogeneous in respect of their sensitivity to various aspects of business ethics and ecology.Przegląd literatury zachodnio-europejskiej pozwala stwierdzić, że jednym z najbardziej zauważalnych trendów w sferze konsumpcji w ostatnich latach jest coraz większa świadomość ekologiczna i społeczna w wymiarze globalnym. Problematyka zachowań i postaw konsumentów wobec produktów "społecznie odpowiedzialnych" nabiera coraz większego znaczenia także w polskiej gospodarce. Celem artykułu jest ocena perspektyw rozwoju etyczneji ekologicznej konsumpcji w Polsce na tle krajów zachodnio-europejskich. Analizę porównawczą prowadzono bazując na źródłach wtórych jak i badaniach pierwotnych realizowanych na reprezentatywnej próbie losowej dorosłych mieszkańców Polski. W oparciu o analizę czynnikową, a dokładniej metodę analizy głównych składowych, dokonano także podziału polskich konsumentów na jednorodne grupy typologiczne pod względem ich wrażliwości na różne aspekty związane z ekologią i etyką
A Novel Three-Phase Model of Brain Tissue Microstructure
We propose a novel biologically constrained three-phase model of the brain microstructure. Designing a realistic model is tantamount to a packing problem, and for this reason, a number of techniques from the theory of random heterogeneous materials can be brought to bear on this problem. Our analysis strongly suggests that previously developed two-phase models in which cells are packed in the extracellular space are insufficient representations of the brain microstructure. These models either do not preserve realistic geometric and topological features of brain tissue or preserve these properties while overestimating the brain's effective diffusivity, an average measure of the underlying microstructure. In light of the highly connected nature of three-dimensional space, which limits the minimum diffusivity of biologically constrained two-phase models, we explore the previously proposed hypothesis that the extracellular matrix is an important factor that contributes to the diffusivity of brain tissue. Using accurate first-passage-time techniques, we support this hypothesis by showing that the incorporation of the extracellular matrix as the third phase of a biologically constrained model gives the reduction in the diffusion coefficient necessary for the three-phase model to be a valid representation of the brain microstructure
Multi-modal characterization of rapid anterior hippocampal volume increase associated with aerobic exercise.
The hippocampus has been shown to demonstrate a remarkable degree of plasticity in response to a variety of tasks and experiences. For example, the size of the human hippocampus has been shown to increase in response to aerobic exercise. However, it is currently unknown what underlies these changes. Here we scanned sedentary, young to middle-aged human adults before and after a six-week exercise intervention using nine different neuroimaging measures of brain structure, vasculature, and diffusion. We then tested two different hypotheses regarding the nature of the underlying changes in the tissue. Surprisingly, we found no evidence of a vascular change as has been previously reported. Rather, the pattern of changes is better explained by an increase in myelination. Finally, we show hippocampal volume increase is temporary, returning to baseline after an additional six weeks without aerobic exercise. This is the first demonstration of a change in hippocampal volume in early to middle adulthood suggesting that hippocampal volume is modulated by aerobic exercise throughout the lifespan rather than only in the presence of age related atrophy. It is also the first demonstration of hippocampal volume change over a period of only six weeks, suggesting gross morphometric hippocampal plasticity occurs faster than previously thought
Studying neuroanatomy using MRI
The study of neuroanatomy using imaging enables key insights into how our brains function, are shaped by genes and environment, and change with development, aging, and disease. Developments in MRI acquisition, image processing, and data modelling have been key to these advances. However, MRI provides an indirect measurement of the biological signals we aim to investigate. Thus, artifacts and key questions of correct interpretation can confound the readouts provided by anatomical MRI. In this review we provide an overview of the methods for measuring macro- and mesoscopic structure and inferring microstructural properties; we also describe key artefacts and confounds that can lead to incorrect conclusions. Ultimately, we believe that, though methods need to improve and caution is required in its interpretation, structural MRI continues to have great promise in furthering our understanding of how the brain works
Towards accurate and precise T1 and extracellular volume mapping in the myocardium: a guide to current pitfalls and their solutions
Mapping of the longitudinal relaxation time (T1) and extracellular volume (ECV) offers a means of identifying pathological changes in myocardial tissue, including diffuse changes that may be invisible to existing T1-weighted methods. This technique has recently shown strong clinical utility for pathologies such as Anderson- Fabry disease and amyloidosis and has generated clinical interest as a possible means of detecting small changes in diffuse fibrosis; however, scatter in T1 and ECV estimates offers challenges for detecting these changes, and bias limits comparisons between sites and vendors. There are several technical and physiological pitfalls that influence the accuracy (bias) and precision (repeatability) of T1 and ECV mapping methods. The goal of this review is to describe the most significant of these, and detail current solutions, in order to aid scientists and clinicians to maximise the utility of T1 mapping in their clinical or research setting. A detailed summary of technical and physiological factors, issues relating to contrast agents, and specific disease-related issues is provided, along with some considerations on the future directions of the field. Towards accurate and precise T1 and extracellular volume mapping in the myocardium: a guide to current pitfalls and their solutions. Available from: https://www.researchgate.net/publication/317548806_Towards_accurate_and_precise_T1_and_extracellular_volume_mapping_in_the_myocardium_a_guide_to_current_pitfalls_and_their_solutions [accessed Jun 13, 2017]
- …