149 research outputs found

    Sustained expression of miR-26a promotes chromosomal instability and tumorigenesis through regulation of CHFR

    Get PDF
    MicroRNA 26a (miR-26a) reduces cell viability in several cancers, indicating that miR-26a could be used as a therapeutic option in patients. We demonstrate that miR-26a not only inhibits G1-S cell cycle transition and promotes apoptosis, as previously described, but also regulates multiple cell cycle checkpoints. We show that sustained miR-26a over-expression in both breast cancer (BC) cell lines and mouse embryonic fibroblasts (MEFs) induces oversized cells containing either a single-large nucleus or two nuclei, indicating defects in mitosis and cytokinesis. Additionally, we demonstrate that miR-26a induces aneuploidy and centrosome defects and enhances tumorigenesis. Mechanistically, it acts by targeting G1-S transition genes as well as genes involved in mitosis and cytokinesis such as CHFR, LARP1 and YWHAE. Importantly, we show that only the re-expression of CHFR in miR-26a over-expressing cells partially rescues normal mitosis and impairs the tumorigenesis exerted by miR-26a, indicating that CHFR represents an important miR-26a target in the regulation of such phenotypes. We propose that miR-26a delivery might not be a viable therapeutic strategy due to the potential deleterious oncogenic activity of this miRNA

    Centrosome clustering and Cyclin D1 gene amplification in double minutes are common events in chromosomal unstable bladder tumors

    Get PDF
    Background: Aneuploidy, centrosome abnormalities and gene amplification are hallmarks of chromosome instability (CIN) in cancer. Yet there are no studies of the in vivo behavior of these phenomena within the same bladder tumor. Methods: Twenty-one paraffin-embedded bladder tumors were analyzed by conventional comparative genome hybridization and fluorescence in situ hybridization (FISH) with a cyclin D1 gene (CCND1)/centromere 11 dual-color probe. Immunofluorescent staining of α, ÎČ and Îł tubulin was also performed. Results: Based on the CIN index, defined as the percentage of cells not displaying the modal number for chromosome 11, tumors were classified as CIN-negative and CIN-positive. Fourteen out of 21 tumors were considered CIN-positive. All T1G3 tumors were included in the CIN-positive group whereas the majority of Ta samples were classified as CIN-negative tumors. Centrosome clustering was observed in six out of 12 CIN-positive tumors analyzed. CCND1 amplification in homogeneously staining regions was present in six out of 14 CIN-positive tumors; three of them also showed amplification of this gene in double minutes. Conclusions: Complex in vivo behavior of CCND1 amplicon in bladder tumor cells has been demonstrated by accurate FISH analysis on paraffin-embedded tumors. Positive correlation between high heterogeneity, centrosome abnormalities and CCND1 amplification was found in T1G3 bladder carcinomas. This is the first study to provide insights into the coexistence of CCND1 amplification in homogeneously staining regions and double minutes in primary bladder tumors. It is noteworthy that those patients whose tumors showed double minutes had a significantly shorter overall survival rate (p < 0.001)

    Characterisation of breast fine-needle aspiration biopsies by centrosome aberrations and genomic instability

    Get PDF
    Recent studies have suggested that aneuploidy in malignant tumours could be a consequence of centrosome aberrations. Using immunofluorescence analysis with an antibody against Îł-tubulin and DNA image cytometry, we measured centrosome aberrations and DNA ploidy patterns in fine-needle aspiration biopsies (FNABs) of 58 breast lesions. Benign lesions did not show any centrosome aberrations. DNA diploid carcinomas showed a mean percentage of cells with centrosomal defects of 2.1%. The aneuploid invasive carcinomas could be divided into two subgroups by their significantly (P=0.0003) different percentage of cells with centrosome aberrations (2.0 and 10.3%, respectively) and their significantly (P=0.0003) different percentage of cells with nonmodal DNA content values determined by the Stemline Scatter Index (SSI), a measure of genomic instability. The percentage of cells with centrosome aberrations demonstrated a positive, linear correlation with the corresponding SSI (r=0.82, P<0.0001) and loss of tissue differentiation (r=0.78, P<0.0001). Our results indicate the percentage of cells with centrosome aberrations as being sufficient to divide the investigated tumours into three significantly different groups: benign lesions with no centrosomal aberrations, and two malignant tumour types with mean values of 2.1 and 9.6% of centrosomal defects, respectively. Together, these results demonstrate that centrosome aberrations correlate with genomic instability and loss of tissue differentiation. Furthermore, this study shows the feasibility of centrosomal analysis in FNAB of the breast and suggests centrosomal aberrations as possessing diagnostic and prognostic value

    Evolution of Resistance to Aurora Kinase B Inhibitors in Leukaemia Cells

    Get PDF
    Aurora kinase inhibitors are new mitosis-targeting drugs currently in clinical trials for the treatment of haematological and solid malignancies. However, knowledge of the molecular factors that influence sensitivity and resistance remains limited. Herein, we developed and characterised an in vitro leukaemia model of resistance to the Aurora B inhibitor ZM447439. Human T-cell acute lymphoblastic leukaemia cells, CCRF-CEM, were selected for resistance in 4 ”M ZM447439. CEM/AKB4 cells showed no cross-resistance to tubulin-targeted and DNA-damaging agents, but were hypersensitive to an Aurora kinase A inhibitor. Sequencing revealed a mutation in the Aurora B kinase domain corresponding to a G160E amino acid substitution. Molecular modelling of drug binding in Aurora B containing this mutation suggested that resistance is mediated by the glutamate substitution preventing formation of an active drug-binding motif. Progression of resistance in the more highly selected CEM/AKB8 and CEM/AKB16 cells, derived sequentially from CEM/AKB4 in 8 and 16 ”M ZM447439 respectively, was mediated by additional defects. These defects were independent of Aurora B and multi-drug resistance pathways and are associated with reduced apoptosis mostly likely due to reduced inhibition of the catalytic activity of aurora kinase B in the presence of drug. Our findings are important in the context of the use of these new targeted agents in treatment regimes against leukaemia and suggest resistance to therapy may arise through multiple independent mechanisms

    A Role for Polyploidy in the Tumorigenicity of Pim-1-Expressing Human Prostate and Mammary Epithelial Cells

    Get PDF
    Polyploidy is a prominent feature of many human cancers, and it has long been hypothesized that polyploidy may contribute to tumorigenesis by promoting genomic instability. In this study, we investigated whether polyploidy per se induced by a relevant oncogene can promote genomic instability and tumorigenicity in human epithelial cells.When the oncogenic serine-threonine kinase Pim-1 is overexpressed in immortalized, non-tumorigenic human prostate and mammary epithelial cells, these cells gradually converted to polyploidy and became tumorigenic. To assess the contribution of polyploidy to tumorigenicity, we obtained sorted, matched populations of diploid and polyploid cells expressing equivalent levels of the Pim-1 protein. Spectral karyotyping revealed evidence of emerging numerical and structural chromosomal abnormalities in polyploid cells, supporting the proposition that polyploidy promotes chromosomal instability. Polyploid cells displayed an intact p53/p21 pathway, indicating that the viability of polyploid cells in this system is not dependent on the inactivation of the p53 signaling pathway. Remarkably, only the sorted polyploid cells were tumorigenic in vitro and in vivo.Our results support the notion that polyploidy can promote chromosomal instability and the initiation of tumorigenesis in human epithelial cells

    Microarray comparative genomic hybridization detection of chromosomal imbalances in uterine cervix carcinoma

    Get PDF
    BACKGROUND: Chromosomal Comparative Genomic Hybridization (CGH) has been applied to all stages of cervical carcinoma progression, defining a specific pattern of chromosomal imbalances in this tumor. However, given its limited spatial resolution, chromosomal CGH has offered only general information regarding the possible genetic targets of DNA copy number changes. METHODS: In order to further define specific DNA copy number changes in cervical cancer, we analyzed 20 cervical samples (3 pre-malignant lesions, 10 invasive tumors, and 7 cell lines), using the GenoSensor microarray CGH system to define particular genetic targets that suffer copy number changes. RESULTS: The most common DNA gains detected by array CGH in the invasive samples were located at the RBP1-RBP2 (3q21-q22) genes, the sub-telomeric clone C84C11/T3 (5ptel), D5S23 (5p15.2) and the DAB2 gene (5p13) in 58.8% of the samples. The most common losses were found at the FHIT gene (3p14.2) in 47% of the samples, followed by deletions at D8S504 (8p23.3), CTDP1-SHGC- 145820 (18qtel), KIT (4q11-q12), D1S427-FAF1 (1p32.3), D9S325 (9qtel), EIF4E (eukaryotic translation initiation factor 4E, 4q24), RB1 (13q14), and DXS7132 (Xq12) present in 5/17 (29.4%) of the samples. CONCLUSION: Our results confirm the presence of a specific pattern of chromosomal imbalances in cervical carcinoma and define specific targets that are suffering DNA copy number changes in this neoplasm

    Blood lead, cadmium and mercury among children from urban, industrial and rural areas of Fez Boulemane Region (Morocco): Relevant factors and early renal effects

    Full text link
    Objectives: To describe blood lead (Pb-B), cadmium (Cd-B) and mercury (Hg-B) levels in children living in urban, industrial and rural areas in Fez city (north of Morocco) and to identify the determinants and some renal effects of exposure. Material and Methods: The study was conducted from June 2007 to January 2008 in 209 school children (113 girls, 96 boys), aged 6-12 years, from urban, industrial and rural areas in Fez city. Interview and questionnaires data were obtained. Blood and urinary samples were analyzed. Results: The mean of blood lead levels (Pb-B) in our population was 55.53 ÎŒg/l (range: 7.5-231.1 ÎŒg/l). Children from the urban area had higher blood lead levels (BLLs) mean (82.36 ÎŒg/l) than children from industrial and rural areas (48.23 and 35.99 ÎŒg/l, respectively); with no significant difference between boys and girls. BLLs were associated with traffic intensity, passive smoking and infancy in the urban area. The mean of blood cadmium levels (BCLs) was 0.22 ÎŒg/l (range: 0.06-0.68 ÎŒg/l), with no difference between various areas. Rural boys had higher BCLs mean than rural girls, but no gender influence was noticed in the other areas. BCLs were associated with the number of cigarettes smoked at children's homes. The blood mercury levels (BMLs) mean was 0.49 ÎŒg/l (range: 0.01-5.31 ÎŒg/l). The BMLs mean was higher in urban and industrial areas than in the rural area with no gender-related difference. BMLs were associated with amalgam fillings and infancy in the urban area. About 8% of the children had BLLs ≄ 100 ÎŒg/l particularly in the urban area, microalbuminuria and a decrease in height were noticed in girls from the inner city of Fez and that can be related to high BLLs (89.45 ÎŒg/l). Conclusions: There is a need to control and regulate potential sources of contamination by these trace elements in children; particularly for lead

    Emotional Speech Perception Unfolding in Time: The Role of the Basal Ganglia

    Get PDF
    The basal ganglia (BG) have repeatedly been linked to emotional speech processing in studies involving patients with neurodegenerative and structural changes of the BG. However, the majority of previous studies did not consider that (i) emotional speech processing entails multiple processing steps, and the possibility that (ii) the BG may engage in one rather than the other of these processing steps. In the present study we investigate three different stages of emotional speech processing (emotional salience detection, meaning-related processing, and identification) in the same patient group to verify whether lesions to the BG affect these stages in a qualitatively different manner. Specifically, we explore early implicit emotional speech processing (probe verification) in an ERP experiment followed by an explicit behavioral emotional recognition task. In both experiments, participants listened to emotional sentences expressing one of four emotions (anger, fear, disgust, happiness) or neutral sentences. In line with previous evidence patients and healthy controls show differentiation of emotional and neutral sentences in the P200 component (emotional salience detection) and a following negative-going brain wave (meaning-related processing). However, the behavioral recognition (identification stage) of emotional sentences was impaired in BG patients, but not in healthy controls. The current data provide further support that the BG are involved in late, explicit rather than early emotional speech processing stages

    The mammalian centrosome and its functional significance

    Get PDF
    Primarily known for its role as major microtubule organizing center, the centrosome is increasingly being recognized for its functional significance in key cell cycle regulating events. We are now at the beginning of understanding the centrosome’s functional complexities and its major impact on directing complex interactions and signal transduction cascades important for cell cycle regulation. The centrosome orchestrates entry into mitosis, anaphase onset, cytokinesis, G1/S transition, and monitors DNA damage. Recently, the centrosome has also been recognized as major docking station where regulatory complexes accumulate including kinases and phosphatases as well as numerous other cell cycle regulators that utilize the centrosome as platform to coordinate multiple cell cycle-specific functions. Vesicles that are translocated along microtubules to and away from centrosomes may also carry enzymes or substrates that use centrosomes as main docking station. The centrosome’s role in various diseases has been recognized and a wealth of data has been accumulated linking dysfunctional centrosomes to cancer, Alstrom syndrome, various neurological disorders, and others. Centrosome abnormalities and dysfunctions have been associated with several types of infertility. The present review highlights the centrosome’s significant roles in cell cycle events in somatic and reproductive cells and discusses centrosome abnormalities and implications in disease

    Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.

    Get PDF
    Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field
    • 

    corecore