35 research outputs found

    Neuronal diversity of the amygdala and the bed nucleus of the stria terminalis

    Get PDF
    The amygdala complex is a diverse group of more than 13 nuclei, segregated in five major groups: the basolateral (BLA), central (CeA), medial (MeA), cortical (CoA), and basomedial (BMA) amygdala nuclei. These nuclei can be distinguished depending on their cytoarchitectonic properties, connectivity, genetic, and molecular identity, and most importantly, on their functional role in animal behavior. The extended amygdala includes the CeA and the bed nucleus of the stria terminalis (BNST). Both CeA and the BNST share similar cellular organization, including common neuron types, reciprocal connectivity, and many overlapping downstream targets. In this section, we describe the advances of our knowledge on neuronal diversity in the amygdala complex and the BNST, based on recent functional studies, performed at genetic, molecular, physiological, and anatomical levels in rodent models, especially rats and mice. Molecular and connection property can be used separately, or in combinations, to define neuronal populations, leading to a multiplexed neuronal diversity-supporting different functional roles. © 2020 Elsevier B.V

    Convergent neuroendocrine mechanisms of social buffering and stress contagion

    Get PDF
    Social interactions play a key role in modulating the impact of stressful experiences. In some cases, social interactions can result in social buffering, the process in which the presence of one individual reduces the physiological and behavioral impact of stress in another individual. On the other hand, there is growing evidence that a key initiating factor of social buffering behaviors is the initiation of an anxiogenic state in the individual that was not directly exposed to the stress. This is referred to as stress contagion (a form of emotion contagion). Both processes involve the transmission of social information, suggesting that contagion and buffering could share similar neural mechanisms. In general, mechanistic studies of contagion and buffering are considered separately, even though behavioral studies show that a degree of contagion is usually necessary for social buffering behaviors to occur. Here we consider the extent to which the neuropeptides corticotropin releasing hormone and oxytocin are involved in contagion and stress buffering. We also assess the importance that frontal cortical areas such as the anterior cingulate cortex and infralimbic cortex play in these behavioral processes

    Histone deacetylase inhibitor treatment promotes spontaneous caregiving behaviour in non‐aggressive virgin male mice

    No full text
    The majority of mammalian species are uniparental, with the mother solely providing care for young conspecifics, although fathering behaviours can emerge under certain circumstances. For example, a great deal of individual variation in response to young pups has been reported in multiple inbred strains of laboratory male mice. Furthermore, sexual experience and subsequent cohabitation with a female conspecific can induce caregiving responses in otherwise indifferent, fearful or aggressive males. Thus, a highly conserved parental neural circuit is likely present in both sexes; however, the extent to which infants are capable of activating this circuit may vary. In support of this idea, fearful or indifferent responses toward pups in female mice are linked to greater immediate early gene (IEG) expression in a fear/defensive circuit involving the anterior hypothalamus compared to that in an approach/attraction circuit involving the ventral tegmental area. However, experience with infants, particularly in combination with histone deacetylase inhibitor (HDACi) treatment, can reverse this pattern of pup-induced activation of fear/defence circuitry and promote approach behaviour. Thus, HDACi treatment may increase the transcription of primed/poised genes that play a role in the activation and selection of a maternal approach circuit in response to pup stimuli. In the present study, we investigated whether HDACi treatment would impact behavioural response selection and associated IEG expression changes in virgin male mice that are capable of ignoring, attacking or caring for pups. The results obtained indicate that systemic HDACi treatment induces spontaneous caregiving behaviour in non-aggressive male mice and alters the pattern of pup-induced IEG expression across a fear/defensive neural circuit

    Inhibition of vasopressin V1a receptors in the medioventral bed nucleus of the stria terminalis has sex- and context-specific anxiogenic effects.

    No full text
    Vasopressin V1a receptors (V1aR) are thought to contribute to the pathophysiology of psychiatric disorders such as anxiety and depression, sparking interest in V1aR as a therapeutic target. Although the global effects of V1aR have been documented, less is known about the specific neural circuits mediating these effects. Moreover, few studies have examined context-specific V1aR function in both males and females. By using the California mouse, we first studied the effects of sex and social defeat stress on V1aR binding in the forebrain. In females but not males, V1aR binding in the bed nucleus of the stria terminalis (BNST) was negatively correlated to social interaction behavior. In females stress also increased V1aR binding in the nucleus accumbens (NAc). Infusions of V1aR antagonist in to the medioventral BNST (BNSTmv) had anxiogenic effects only in animals naïve to defeat. For males, inhibition of V1aR in BNSTmv had anxiogenic effects in social and nonsocial contexts, but for females, anxiogenic effects were limited to social contexts. In stressed females, inhibition of V1aR in the NAc shell had no effect on social interaction behavior, but had an anxiogenic effect in an open field test. These data suggest that V1aR in BNSTmv have anxiolytic and prosocial effects in males, and that in females, prosocial and anxiolytic effects of V1aR appear to be mediated independently by receptors in the BNSTmv and NAc shell, respectively. These findings suggest that males have more overlap in neural circuits modulating anxiety in social and nonsocial contexts than females
    corecore