199 research outputs found

    Heat and health in Antwerp under climate change: Projected impacts and implications for prevention

    Get PDF
    &lt;p&gt;&lt;b&gt;BACKGROUND: &lt;/b&gt;Excessive summer heat is a serious environmental health problem in several European cities. Heat-related mortality and morbidity is likely to increase under climate change scenarios without adequate prevention based on locally relevant evidence.&lt;/p&gt; &lt;p&gt;&lt;b&gt;METHODS: &lt;/b&gt;We modelled the urban climate of Antwerp for the summer season during the period 1986-2015, and projected summer daily temperatures for two periods, one in the near (2026-2045) and one in the far future (2081-2100), under the Representative Concentration Pathway (RCP) 8.5. We then analysed the relationship between temperature and mortality, as well as with hospital admissions for the period 2009-2013, and estimated the projected mortality in the near future and far future periods under changing climate and population, assuming alternatively no acclimatization and acclimatization based on a constant threshold percentile temperature.&lt;/p&gt; &lt;p&gt;&lt;b&gt;RESULTS: &lt;/b&gt;During the sample period 2009-2013 we observed an increase in daily mortality from a maximum daily temperature of 26°C, or the 89th percentile of the maximum daily temperature series. The annual average heat-related mortality in this period was 13.4 persons (95% CI: 3.8-23.4). No effect of heat was observed in the case of hospital admissions due to cardiorespiratory causes. Under a no acclimatization scenario, annual average heat-related mortality is multiplied by a factor of 1.7 in the near future (24.1deaths/year CI 95%: 6.78-41.94) and by a factor of 4.5 in the far future (60.38deaths/year CI 95%: 17.00-105.11). Under a heat acclimatization scenario, mortality does not increase significantly in the near or in the far future.&lt;/p&gt; &lt;p&gt;&lt;b&gt;CONCLUSION: &lt;/b&gt;These results highlight the importance of a long-term perspective in the public health prevention of heat exposure, particularly in the context of a changing climate, and the calibration of existing prevention activities in light of locally relevant evidence.&lt;/p&gt;</p

    HIV-Specific Cd8+ T Cells Produce Antiviral Cytokines but Are Impaired in Cytolytic Function

    Get PDF
    The use of peptide–human histocompatibility leukocyte antigen (HLA) class I tetrameric complexes to identify antigen-specific CD8+ T cells has provided a major development in our understanding of their role in controlling viral infections. However, questions remain about the exact function of these cells, particularly in HIV infection. Virus-specific cytotoxic T lymphocytes exert much of their activity by secreting soluble factors such as cytokines and chemokines. We describe here a method that combines the use of tetramers and intracellular staining to examine the functional heterogeneity of antigen-specific CD8+ T cells ex vivo. After stimulation by specific peptide antigen, secretion of interferon (IFN)-γ, tumor necrosis factor (TNF)-α, macrophage inflammatory protein (MIP)-1β, and perforin is analyzed by FACS® within the tetramer-positive population in peripheral blood. Using this method, we have assessed the functional phenotype of HIV-specific CD8+ T cells compared with cytomegalovirus (CMV)-specific CD8+ T cells in HIV chronic infection. We show that the majority of circulating CD8+ T cells specific for CMV and HIV antigens are functionally active with regards to the secretion of antiviral cytokines in response to antigen, although a subset of tetramer-staining cells was identified that secretes IFN-γ and MIP-1β but not TNF-α. However, a striking finding is that HIV-specific CD8+ T cells express significantly lower levels of perforin than CMV-specific CD8+ T cells. This lack of perforin is linked with persistent CD27 expression on HIV-specific cells, suggesting impaired maturation, and specific lysis ex vivo is lower for HIV-specific compared with CMV-specific cells from the same donor. Thus, HIV-specific CD8+ T cells are impaired in cytolytic activity

    Comparative historical sociology and the State : problems of method

    Get PDF
    Historical sociology can be understood both as a specific sub-field of sociology and as providing general conceptual underpinnings of the discipline, to the extent that it provides an understanding of the specificity of the modern state and the perceived emergence of modernity within Europe. The association of modernity with Europe (and with a European history limited to the self-identified boundaries of the continent) is commonplace and pervasive within the social sciences and humanities. What such an understanding fails to take into consideration, however, are the connections between Europe and the rest of the world that constitute the broader context for the emergence of what is understood to be the modern world and its institutions, such as the state and market. In this article, I suggest that integral to this misunderstanding, and its reproduction over time, is the methodology of comparative historical sociology as represented by ideal types. In contrast, I argue for ‘connected sociologies’ as a more appropriate way to understand our shared past and its continuing impact upon the present. I examine these issues in the context of historical sociological understandings of nation-state formation

    Opportunities And Challenges of E-Health and Telemedicine Via Satelite

    Get PDF
    The introduction of Information and Communication Technology (ICT) in the health scenario is instrumental for the development of sustainable services of direct benefit for the European citizen. The setting up of satellite based applications will enhance rapidly the decentralisation and the enrichment of the European territory driving it towards a homogenous environment for healthcare

    The amino terminal domain from Mrt4 protein can functionally replace the RNA binding domain of the ribosomal P0 protein

    Get PDF
    In Saccharomyces cerevisiae, the Mrt4 protein is a component of the ribosome assembly machinery that shares notable sequence homology to the P0 ribosomal stalk protein. Here, we show that these proteins can not bind simultaneously to ribosomes and moreover, a chimera containing the first 137 amino acids of Mrt4 and the last 190 amino acids from P0 can partially complement the absence of the ribosomal protein in a conditional P0 null mutant. This chimera is associated with ribosomes isolated from this strain when grown under restrictive conditions, although its binding is weaker than that of P0. These ribosomes contain less P1 and P2 proteins, the other ribosomal stalk components. Similarly, the interaction of the L12 protein, a stalk base component, is affected by the presence of the chimera. These results indicate that Mrt4 and P0 bind to the same site in the 25S rRNA. Indeed, molecular dynamics simulations using modelled Mrt4 and P0 complexes provide further evidence that both proteins bind similarly to rRNA, although their interaction with L12 displays notable differences. Together, these data support the participation of the Mrt4 protein in the assembly of the P0 protein into the ribosome and probably, that also of the L12 protein

    Response of methanogenic microbial communities to desiccation stress in flooded and rain-fed paddy soil from Thailand

    Get PDF
    Rice paddies in central Thailand are flooded either by irrigation (irrigated rice) or by rain (rain-fed rice). The paddy soils and their microbial communities thus experience permanent or arbitrary submergence, respectively. Since methane production depends on anaerobic conditions, we hypothesized that structure and function of the methanogenic microbial communities are different in irrigated and rain-fed paddies and react differently upon desiccation stress. We determined rates and relative proportions of hydrogenotrophic and aceticlastic methanogenesis before and after short-term drying of soil samples from replicate fields. The methanogenic pathway was determined by analyzing concentrations and δ13C of organic carbon and of CH4 and CO2 produced in the presence and absence of methyl fluoride, an inhibitor of aceticlastic methanogenesis. We also determined the abundance (qPCR) of genes and transcripts of bacterial 16S rRNA, archaeal 16S rRNA and methanogenic mcrA (coding for a subunit of the methyl coenzyme M reductase) and the composition of these microbial communities by T-RFLP fingerprinting and/or Illumina deep sequencing. The abundances of genes and transcripts were similar in irrigated and rain-fed paddy soil. They also did not change much upon desiccation and rewetting, except the transcripts of mcrA, which increased by more than two orders of magnitude. In parallel, rates of CH4 production also increased, in rain-fed soil more than in irrigated soil. The contribution of hydrogenotrophic methanogenesis increased in rain-fed soil and became similar to that in irrigated soil. However, the relative microbial community composition on higher taxonomic levels was similar between irrigated and rain-fed soil. On the other hand, desiccation and subsequent anaerobic reincubation resulted in systematic changes in the composition of microbial communities for both Archaea and Bacteria. It is noteworthy that differences in the community composition were mostly detected on the level of operational taxonomic units (OTUs; 97% sequence similarity). The treatments resulted in change of the relative abundance of several archaeal OTUs. Some OTUs of Methanobacterium, Methanosaeta, Methanosarcina, Methanocella and Methanomassiliicoccus increased, while some of Methanolinea and Methanosaeta decreased. Bacterial OTUs within Firmicutes, Cyanobacteria, Planctomycetes and Deltaproteobacteria increased, while OTUs within other proteobacterial classes decreased
    corecore