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A B S T R A C T

Background: Excessive summer heat is a serious environmental health problem in several European cities. Heat-
related mortality and morbidity is likely to increase under climate change scenarios without adequate prevention
based on locally relevant evidence.
Methods: We modelled the urban climate of Antwerp for the summer season during the period 1986–2015, and
projected summer daily temperatures for two periods, one in the near (2026–2045) and one in the far future
(2081–2100), under the Representative Concentration Pathway (RCP) 8.5. We then analysed the relationship
between temperature and mortality, as well as with hospital admissions for the period 2009–2013, and estimated
the projected mortality in the near future and far future periods under changing climate and population, as-
suming alternatively no acclimatization and acclimatization based on a constant threshold percentile tem-
perature.
Results: During the sample period 2009–2013 we observed an increase in daily mortality from a maximum daily
temperature of 26 °C, or the 89th percentile of the maximum daily temperature series. The annual average heat-
related mortality in this period was 13.4 persons (95% CI: 3.8–23.4). No effect of heat was observed in the case
of hospital admissions due to cardiorespiratory causes. Under a no acclimatization scenario, annual average
heat-related mortality is multiplied by a factor of 1.7 in the near future (24.1 deaths/year CI 95%: 6.78–41.94)
and by a factor of 4.5 in the far future (60.38 deaths/year CI 95%: 17.00–105.11). Under a heat acclimatization
scenario, mortality does not increase significantly in the near or in the far future.
Conclusion: These results highlight the importance of a long-term perspective in the public health prevention of
heat exposure, particularly in the context of a changing climate, and the calibration of existing prevention
activities in light of locally relevant evidence.

1. Background

The epidemiologic evidence on the association between heat and
health impacts is clear and well established in major cities of western
Europe (Analitis et al., 2014; D'Ippoliti et al., 2010; Leone et al., 2013;

Michelozzi et al., 2009), especially concerning the relationship between
high temperatures and mortality, and several of the risk factors in the
relevant causal pathways (Bouchama et al., 2007; Kovats and Hajat,
2008). Baccini et al. studied the relationship between daily maximum
apparent temperatures and mortality in 15 European cities, finding
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various degrees of increase in mortality in Mediterranean cities and
north-continental cities, respectively, for every 1 °C increase in max-
imum apparent temperature above a city-specific threshold (Baccini
et al., 2008). An additional study, conducted across 12 European cities,
found a positive association between temperature and hospital admis-
sions for respiratory disorders (Michelozzi et al., 2009). Subsequent
studies have confirmed similar findings.

Heat-related health effects are likely to exacerbate in these urban
settings under climate change, with projected rising temperatures, an
increase in frequency and intensity of heat waves in the European
Region (IPCC, 2013) and an intensification of the urban heat island
effect (Founda and Santamouris, 2017; Wouters et al., 2017). In the
absence of adaptation, an increase in heat-related adverse health effects
may follow (Ciscar et al., 2014; Hajat et al., 2014; Petkova et al., 2014).
Notwithstanding the increase in the available evidence, there are sev-
eral major urban agglomerations in Europe for which no study has been
published on the local links between heat and health. This hampers the
ability to plan and implement adequate prevention, and evidence-based
health adaptation to climate change.

Heat-related mortality has been described in Belgium from the early
1990s (Sartor et al., 1995, 1997), and thereafter very strong impacts
have been confirmed in 2003 (Sartor, 2004) and 2006 (Maes et al.,
2007). In this paper, we examine retrospectively the association be-
tween temperature and mortality, and selected non-fatal outcomes, in
the city of Antwerp, in Belgium, in the period 2009 to 2013. Thereafter,
we estimate the changes in heat-related mortality under likely climate
change and population scenarios in two future time periods
(2026–2045 and 2081–2100), in the absence of adequate adaptation,
and discuss policy implications in the context of current prevention and
adaptation efforts in Belgium.

2. Methods

2.1. Current and future Antwerp urban climate assessment

The retrospective meteorological data series is based on tempera-
tures derived by UrbClim, an urban climate model designed to model
the urban influence on large-scale meteorological conditions at a re-
solution of a few hundred of metres (De Ridder et al., 2015; Lauwaet
et al., 2015). The model solves a set of simplified prognostic flow
equations for the atmospheric boundary layer and contains detailed
urban surface physics, taking into account the reduced vegetation and
increased soil sealing in the city centre. The synoptic (large-scale) at-
mospheric boundary conditions are taken from the global ERA-Interim
reanalysis data set of the European Centre for Medium-Range Weather
Forecasts (ECMWF) (Dee et al., 2011). Local terrain and surface data
are based on open-source datasets, such as the Corine land cover and
the European Environment Agency soil sealing data set for Europe. The
model has previously been validated with several validation campaigns,
among which one has focussed on the agglomeration of Antwerp (De
Ridder et al., 2015; Garcia-Diez et al., 2016; Laaidi et al., 2011). Using
the UrbClim model, daily urban climate data has been composed for all
summer periods (May–September) for a climate reference period
(1986–2015). The model provides gridded hourly data with a 250 m
resolution for the entire urban agglomeration of Antwerp, which oc-
cupies a domain of approximately 20 by 20 km. This raw output is
subsequently converted to daily minimal, mean and maximal tem-
perature values, and for each of the 22 municipalities within the ag-
glomeration, the (spatial) mean over the municipality is computed.

Future climate data has been compiled using a statistical method, as
described in detail in (Lauwaet et al., 2015). We have composed pro-
jected summer daily minimal, maximal and mean temperatures for two
periods, one in the near (2026–2045) and one in the far future
(2081–2100), by rescaling reference temperatures (1986–2015) ac-
cording to the monthly temperature changes observed in an ensemble
of global climate models (GCMs). For the study at hand, the

temperature rescaling functions are based on the output of a set of
GCMs contained in the archives of the Coupled Model Intercomparison
Project (CMIP5) archive of the Intergovernmental Panel on Climate
Change (IPCC, 2013). Based on data requirements and availability,
eleven GCMs have been selected, which have to form a representative
set of the GCMs contained in the entire CMIP5 archive (Lauwaet et al.,
2015). Due to the large computational demand of the study, only one
climate scenario has been used. In its most recent assessment report
(AR5), the IPCC has identified four pathways (Representative Con-
centration Pathways, RCPs) (IPCC, 2013), ranging from strong
(RCP2.6) to weak mitigation (RCP8.5). To provide a range for the ne-
gative effects of climate change on human health, we have focused on
the RCP8.5 scenario. Although this is the IPCC-scenario with the largest
warming potential, global emission trends still track along the lines of
this scenario (Peters et al., 2012).

2.2. Health impact assessment

The geographical area under study comprises the municipality of
Antwerp (Belgium) for which the daily mortality series (all non-acci-
dental causes, ICD-10 codes: A00-R99) was collected for the period
2009–2013. Initially, mortality data were collected for the 22 munici-
palities that can be loosely defined as the greater Antwerp area.
However, for these surrounding municipalities, both separately and in
aggregate, the mortality count was too low to find statistical associa-
tions. Therefore, the analysis included only temperature and health
outcome data for the city (municipality) of Antwerp for the years 2009
to 2013, for which data were provided by the Flemish Agency of Public
Health. In addition, the daily series of emergency admissions due to
cardiorespiratory causes (ICD-10 codes: I00-I99 and J00-J99) were
collected for the same period. Population data for the city of Antwerp
were obtained from Statistics Belgium for the period 1986–2015.
Projections for the periods 2026–2045 and 2081–2100 were based on
the United Nations World Population Prospects (WPP) forecasts for
Belgium (UNDESA, 2013). Taking as reference the population data for
the city of Antwerp in the year 2015 (516.009 inhabitants), we calcu-
lated the proportion it represented from the total national population.
Thereafter, that proportion was assumed constant, whereby the popu-
lation of Antwerp would behave like that of Belgium. The specific WPP
scenario chosen was the “medium variant” (UNDESA, 2008).

2.2.1. Determination of heatwave threshold temperature
As the dependent variable, we used data on daily mortality due to

natural causes in the summer months in Antwerp from 1st January
2009 to 31st December 2013. As the independent variable, we used
data on the daily maximum and minimum temperatures in this city
across the same period. Instead of using daily mortality data, we chose
to work with mortality residuals, thereby eliminating trend and sea-
sonalities from the mortality series, leaving anomalies in mortality to be
related to temperature. The residuals were obtained by means of uni-
variate autoregressive integrated moving average (ARIMA) modelling
(Box et al., 1994). The advantage of working with residuals as opposed
to daily mortality is that, once modelled, residuals display neither
trends nor periodicities (both of which are inherent in daily mortality),
with the result that any associations found will show a genuine tem-
perature–mortality relationship from a statistical standpoint (with sig-
nificance cut-off p < 0.05). We proceeded to plot the following on a
scatter plot diagram: the mean value of the mortality series residuals on
the same day (vertical axis); the maximum daily temperatures at 2 °C
intervals (horizontal axis), and their corresponding 95% confidence
intervals (CIs). When these mortality residuals are showed in a scatter
plot with the maximum temperature data, the deviations detected
correspond to real mortality anomalies. The temperature from which
the mortality residuals increased significantly vis-à-vis the mean would
thus be the threshold temperature.
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2.2.2. Impact of heat on daily mortality
The impact of temperature on mortality was quantified, using

generalized linear model (GLM) methodology, with the Poisson re-
gression link. This methodology allows us to obtain the increase in the
relative risk (RR) of morbidity and daily mortality associated with an
increase in the maximum daily temperature, and subsequently calculate
the attributable risk (AR) associated with this increase, via the fol-
lowing equation (Coste and Spira, 1991):

= ⎡
⎣

− ⎤
⎦

⋅AR RR
RR

1 100.

On fitting the model, we controlled for seasonalities of a five-, four-
and three-monthly nature, using the sine and cosine functions with
these same periodicities; and for trend and the possible autoregressive
nature of the series. To consider the effect of heat stress through
maximum daily temperature (Tmax), we created the variable Theat de-
fined on the basis of the previously calculated mortality threshold
temperatures. Given that the effect of heat stress on morbidity and
mortality may not be immediate, the following lagged variables were
calculated: Theat (lag 1), which takes into account the effect of the
temperature on day d on mortality, one day later, d + 1; Theat (lag 2),
which takes into account the effect of the temperature on day d on
mortality, two days later, d + 2; and so on successively. The number of
lags were selected on the basis of the literature, which establishes that
the effect of heat is short-term (Theat: lags 1–4) (Alberdi et al., 1998).

Furthermore, given the known synergic effects between heat, par-
ticulate matter and ozone (Diaz et al., 2002; Stafoggia et al., 2008;
Zmirou et al., 1998), the variables of chemical air pollution available
were also introduced as control variables. Particulate matter measure-
ments of the urban background telemetric station in Borgerhout (in the
centre of the Antwerp agglomeration) have been acquired from the
Flemish Environmental Agency. Based on previous studies (Jimenez

et al., 2009; Linares et al., 2006), the relationship between PM10 and
mortality is assumed to be linear, with an effect on mortality until lag 4.
The corresponding lagged variables were therefore created until this
lag, as in the case of temperature. To determine the significant variables
in the modelling process to be used for calculating the RRs and ARs, the
backward stepwise procedure was used, beginning with the model that
included all the explanatory variables, and gradually eliminating those
which individually displayed least statistical significance, with the
process being reiterated until all the variables included were significant
at p < 0.05. Modelling was performed for the summer months
(May–September).

To calculate the mortality attributable to heat we used a well-tested
methodology (Carmona et al., 2016a). Firstly, we calculated the
number of degrees whereby the maximum daily temperature exceeded
the threshold temperature on each day. Thereafter, having ascertained
the percentage increase in mortality for each °C via the AR, the total
mortality percentage for the overall number of degrees whereby max-
imum daily temperatures exceeded the threshold temperature across
the period 2009–2013 would be:

= ⋅ °AR%mortality attributable to heat excess C.

Hence, to go from percentage to daily mortality, it suffices to take
into account the mean mortality in Antwerp during hot days, meaning
days with mortality attributable to heat, as follows:

=

mortality attributable to heat
%mortality attributable to heat·mean mortality

100

=daily mortality attributable to heat
mortality attributable to heat

number of hot days

All analyses were performed using the IBM SPSS Statistics v22 and

Fig. 1. Scatter-plot diagram for determining heat-wave definition temperature on the basis of maximum daily temperature: Antwerp (2009–2013).
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STATA v11.2 statistical software programmes.

3. Results

3.1. Heat–mortality relationship for the sample period (2009–2013)

The mean value of the residuals of this model for every 2 °C increase
in maximum daily temperature is shown on a scatter-plot diagram
(Fig. 1), together with the corresponding 95% confidence intervals
(CIs), and the 95% CIs of the mean of the residuals for the entire study
period (represented by parallel, dashed lines).

From a maximum daily temperature of 26 °C upwards, the residual
anomalies with their CIs do not coincide with the CI of the mean of the
residuals for the overall period, shown as centred on zero. It is from a
maximum daily temperature of 26 °C, therefore, that heatwave-related
mortality can be said to begin to rise statistically significantly. This
temperature coincides with the 89th percentile of the maximum daily
temperature series for the summer months (May–September) across the
period considered.

If, however, the mortality residuals are shown by reference to the
minimum rather than the maximum daily temperature, a value of 18 °C
is obtained, corresponding to the 91st percentile of the minimum
temperature series of the summer months. This percentile is above the
percentile observed for the maximum temperature (p89), which in-
dicates that the maximum daily temperature is more appropriate for
activating prevention plans since its percentile is lower.

Although using one temperature or another for the purpose of de-
fining a hot day (i.e. one where heat-related mortality happens) in
Antwerp may be of no consequence statistically speaking, from an
epidemiological standpoint the effect of temperature on mortality is
linked in greater measure to high maximum than to high minimum
temperatures, which fundamentally give rise to discomfort and are not
a direct cause of mortality (Diaz et al., 2015; Havenith, 2002). There-
fore, in this study the threshold temperature indicator to define a hot
day is set as the maximum daily temperature.

3.2. Impact of heat on mortality and cardiorespiratory emergency hospital
admissions 2009–2013

Across the period 2009–2013, there were 82 days on which the
maximum daily temperature rose above 26 °C, an annual average of
16.4 hot days. Heat-related mortality in this period totalled 67 persons
(95% CI: 19–117), which translates as an annual average heat-related
mortality of 13.4 persons (95% CI: 3.8–23.4), i.e. for each day on which
there is a daily maximum temperature above 26 °C, there is a heat-
related mortality of 0.82 persons (95% CI: 0.23–1.43).

Moreover, in Antwerp, heat was associated with daily mortality at
lag 1. This is in line with previous results on the short-term impact of
heat on mortality. The RR was 1.028 (95% CI: 1.008–1.049); and the
AR was 2.7%, slightly lower than that reported elsewhere for places
with similar mortality threshold percentiles (Carmona et al., 2016b).
The RRs and ARs are shown below in Table 1.

PM10 was observed to have an effect on organic-cause mortality and
cardiorespiratory admissions, in both cases at lag 0, with an impact of
4.3% in the case of mortality and an impact of 8.3% in the case of
admissions for every increase of 10 μg/m3. No effect of heat was ob-
served in the case of hospital admissions due to cardiorespiratory
causes.

3.3. Projected impact of heat on mortality 2026–2045 and 2081–2100

The impact of both heat and cold on populations' health is known to
change over time, not only in terms of threshold temperatures, but also
in terms of impacts as measured by RRs and ARs (Diaz et al., 2015;
Miron et al., 2015; Roldan et al., 2016). This is a consequence of pro-
gressive adaptation to heat by the population (Bobb et al., 2014) and
the ensuing prevention plans (Diaz et al., 2015). Modelling this varia-
tion across time is difficult, however: the retrospective time series has
to be sufficiently long for the variations to be detected and modelled;
and modelling the effect of prevention plans under a changing climate
and population further complicates the process.

When confronted by this difficulty, it is common to assume for
simplicity that both heat-related mortality threshold temperature and
its corresponding impacts remain constant over time (Wu et al., 2014).
The alternative is to assume that there is a process of acclimatization
and that this translates as the fact that the cold- or heat-related
threshold temperature has indeed varied across time. This can be
achieved by assuming that the percentile of the series to which the
threshold temperature corresponds will remain constant, and that, since
temperatures are going to vary in the coming decades, the temperatures
to which such percentiles correspond will also vary.

In this case, both possibilities are considered to determine, on the
basis of the temperature series furnished for the periods 2026–2045 and
2081–2100 under RCP8.5 in Antwerp, the future impact of and mor-
tality attributable to heat over this time horizon. In addition, mortality
will be analysed for the entire period, and its impact will be analysed by
reference to different intermediate time periods. Therefore, two hy-
potheses are considered in this study, with the respective assumptions
being:

1. that the heat-related mortality threshold temperature, corre-
sponding to a maximum daily temperature of 26 °C (89th percentile
of the maximum daily temperatures for the months of May to
September), is not going to vary across time, i.e. there is no heat-
adaptation process; and,

2. that there is a heat-acclimatization process, which means that the
threshold temperature may vary over the course of the different
periods, with the 89th percentile being the element that remains
constant throughout.

In all cases, the AR has been assumed to remain constant and equal
to that calculated for the reference period 2009–2013, i.e. AR: 2.7%
(0.76–4.70).

3.3.1. Projected mortality under a no acclimatization scenario
With reference to the established threshold under this scenario (i.e.

a maximum daily temperature of 26 °C), there would be 535 heatwave
days in Antwerp during the period 2026–2045 under RCP8.5, with
26.7 hot days/year versus the current figure of 16.4 days, a 62.8% in-
crease. Attributable mortality across this period would be 631 persons,
with a mean heat-related mortality of 32 persons per year. This value is
more than double that calculated for the retrospective period
2009–2013.

If the analysis is repeated by dividing the complete period of
20 years into four intermediate periods of 5 years each (as with the
retrospective period 2009–2013), a general increase is seen in the
number of hot days each year, rising from 24.6 per year in the period
2026–2030 to 30 in the last period (see Table 2). There is also an

Table 1
Relative risks (RRs) and attributable risks (ARs) for each degree that Tmax exceeds 26 °C
and for every 10 μg/m3 increase in PM10 concentrations.

Antwerp 2009–2013
Summer months
(May–September)

Variable RR (95% CI) AR (95% CI)

Organic mortality Theat (lag 1) 1.028
(1.008–1.049)

2.7 (0.76–4.70)

PM10 (lag 0) 1.044
(1.016–1.073)

4.3 (1.60–6.84)

Cardiorespiratory hospital
admissions

PM10 (lag 0) 1.090
(1.045–1.138)

8.3 (4.27–12.13)
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increase in annual heat-related mortality in each period. In the last
period, 2041–2045, this mortality is about 39 persons per year, tripling
that in the period 2009–2013.

In turn, during the period 2081–2100 there would be 1075 days
with a maximum daily temperature above 26 °C, i.e. heat-wave days,
with 35.8 hot days/year. Attributable mortality across this period
would be 1710 persons, with a mean heat-related mortality of 86 per-
sons per year. This value is 6.6 times that of the period 2009–2013, i.e.
13 persons. Table 3 shows the results by intermediate periods of 5 years
each for 2081–2100. Under this scenario, the hot days are multiplied by
3.6 in the year 2100 and attributable mortality is multiplied by 7 in
relation to the reference period 2009–2013.

3.3.2. Projected mortality under a heat acclimatization scenario
This scenario assumes that the percentile of the series to which the

threshold temperature corresponds will remain constant, and that, since
temperatures are going to vary in the coming decades, the temperatures
to which such percentiles correspond will also vary. In this case, that
percentile that remains constant throughout is the 89th percentile of
the maximum daily temperatures for the months of May to September,
as determined in the period 2009–2013. This scenario would be the
most conservative from a population acclimatization standpoint, and
the goal would be to ensure that the heat-related mortality threshold
temperature did not exceed the temperatures established for these
periods.

Except for the first period, attributable mortality remains practically
the same as in the reference period 2009–2013, i.e. 67 (19–117), as
seen in Table 4. The number of hot days per year is always the same,
since the threshold temperature is based on a percentile. These results
are in line with a heat-acclimatization process, the fact that there is no
variation in attributable risk, and that variations are solely due to
temperature, since mortality has also been kept constant in each year.

In the 2081–2100 period the threshold temperature in which the
attributable mortality is maintained along the period is above 30 °C, as
can be observed in Table 5. Mortality is slightly increased in compar-
ison with both the reference (2009–2013) and previously modelled
(2026–2045) periods.

4. Discussion

The heat-related mortality threshold temperature, corresponding to
a daily maximum of 26 °C (89th percentile of the summer months) in-
dicates that the hot day phenomenon understood as days hot enough to
cause mortality is currently relatively frequent in Antwerp, with a mean
of 16.4 “hot days” per year. This hot day definition temperature is in
line with the climatic characteristics to which the Antwerp population
is subjected (Curriero et al., 2002; Kovats et al., 2006), characterized by
mild summers. However, it is not climate factors alone that exert an
influence: there are also other aspects such as the population pyramid,
and the over-65 age group in particular (Alberdi et al., 1998; Diaz et al.,
2015; Montero et al., 2012) which have a higher probability of bed
confinement, inability for self care or lack of social contact (Bouchama
et al., 2007), pre-existing chronic diseases (Hajat et al., 2005; Huynen
et al., 2001) as well as socioeconomic factors, such as access to home
insulation and air conditioning (Ballester et al., 2011), the existence of
infrastructures adapted to heat (Vandentorren et al., 2006; Montero
et al., 2012) and the presence or absence of effective heatwave pre-
vention plans (Abrahamson et al., 2009).

Heatwave definition temperatures based on epidemiological studies,
such as this one, have an important advantage over those based on an
exclusively climatological method, since they consider the above po-
pulation-linked factors (Montero et al., 2010). Moreover, from the
stance of the operational efficiency of prevention plans, a proper defi-
nition of the plan activation temperature is crucial because, if the
trigger temperature yielded by the climatological method is higher than
that obtained epidemiologically, plans would not be implemented while
heat-related mortality may already be occurring. In contrast, if the
climatological percentile is below the figure obtained, this would imply
activation of the prevention plan on days on which it was not required,
with the ensuing economic cost (Carmona et al., 2017).

If the minimum rather than the maximum daily temperature is used
as a heatwave-definition indicator, the threshold would be 18 °C (91st
percentile). This heat threshold percentile is higher than that based on
the maximum daily temperature indicator, something frequently ob-
served (Diaz et al., 2015). The fact that this percentile is higher than
that corresponding to the maximum temperature supports the choice of

Table 2
Heat - attributable mortality in the period 2026–2045, assuming a constant threshold temperature of 26 °C in different intermediate 5-year periods.

Period Hot days Organic attributable mortality Daily organic attributable mortality Organic attributable mortality (every year)

2026–2030 123 124.88 (35.15–217.39) 1.02 (0.29–1.77) 24.98 (7.03–43.48)
2031–2035 154 184.16 (51.84–320.57) 1.20 (0.34–2.08) 36.83 (10.37–64.11)
2036–2040 108 128.07 (36.05–222.93) 1.19 (0.33–2.06) 25.61 (7.21–44.59)
2041–2045 150 193.94 (54.59–337.60) 1.29 (0.36–2.25) 38.79 (10.92–67.52)

Table 3
Heat - attributable mortality in the period 2081–2100, assuming a constant threshold temperature of 26 °C in different intermediate 5-year periods.

Period Hot days Organic attributable mortality Daily organic attributable mortality Organic attributable mortality (every year)

2081–2085 252 390.93 (110.04–680.50) 1.55 (0.44–2.70) 78.19 (22.01–136.10)
2086–2090 273 487.15 (137.12–848.00) 1.78 (0.50–3.11) 97.43 (27.42–169.60)
2091–2095 250 355.50 (100.07–618.84) 1.42 (0.40–2.48) 71.10 (20.01–123.77)
2096–2100 300 476.06 (134.00–828.70) 1.59 (0.45–2.76) 95.21 (26.80–165.74)

Table 4
Heat-related mortality by period, with the percentile corresponding to the mortality threshold temperature kept constant.

Period Tmax threshold (p89) Organic attributable mortality Daily organic attributable mortality Organic attributable mortality (every year)

2026–2030 27.33 °C 69.89 (19.67–121.65) 0.83 (0.23–1.45) 13.98 (3.93–24.33)
2031–2035 28.08 °C 84.53 (23.79–147.15) 1.01 (0.28–1.75) 16.91 (4.76–29.43)
2036–2040 27.16 °C 81.68 (22.99–142.18) 0.97 (0.27–1.69) 16.34 (4.60–28.44)
2041–2045 27.85 °C 96.53 (27.17–168.03) 1.15 (0.32–2.00) 19.31 (5.43–33.61)
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maximum daily temperature as the heatwave definition indicator. The
reason, aside from biological considerations (Havenith, 2002), is that a
lower percentile implies that the prevention plan will always be acti-
vated on days on which the epidemiological evidence suggests it would
be needed. For instance, if the maximum daily temperature was chosen
as a threshold indicator in the period considered, it would have been
exceeded 84 times, for a total of 70 occasions if the minimum tem-
perature was chosen. That is, during 14 days there would have been
mortality attributable to heat without preventions plans activated. A
cautious approach to prevention would suggest using maximum daily
temperature as an indicator to define a heatwave, an approach followed
in several relevant studies (Basagaña et al., 2011; Tan et al., 2010; Xu
et al., 2016; Yang et al., 2013).

It should be noted that the period 2009–2013 (the years for which
we had outcome data) did not include any very hot summers. Hence,
the percentile value may not very representative for the long-term cli-
mate (for which typically 20–30 years are considered).

The fact that the association between high temperatures and mor-
tality is established at lag 1, i.e. a very short-term effect, is in line both
with the biological mechanisms implicated, namely the quickness of
onset and lethality of cardiovascular diseases in the elderly (Havenith,
2002), and the results yielded by other studies (Alberdi et al., 1998;
Diaz et al., 2015).

Unfortunately, we could not perform the analysis separately for
cardiovascular and respiratory hospital admissions because we only had
aggregated data for both sets of causes. This could indeed explain the
lack of an effect of heat on the hospital admissions in our analysis.
Notwithstanding, the failure to detect an association between high
temperatures and hospital admissions due to cardiorespiratory causes
could also be explained by differences in the pattern of relationship
between heat-related hospital admissions and mortality (Kovats et al.,
2004; Linares and Diaz, 2008; Mastrangelo et al., 2006). Heat-related
cardiovascular diseases tend to deteriorate so rapidly that patients die
before being admitted to hospital. This occurs for mortality due to
circulatory causes but not for mortality due to respiratory causes, which
tend to display a longer-term progression (Alberdi et al., 1998). In our
case, both the fact that circulatory- and respiratory-cause admissions
were combined and that the number of daily emergency admissions due
to circulatory causes is generally higher than that due to respiratory
causes, may account for this lack of association.

The RR and AR values obtained for the city of Antwerp are slightly
lower than the corresponding values for this percentile. For instance,
taking areas with similar percentiles from a recent study (Diaz et al.,
2015), the corresponding ARs would average 7%, much higher than the
2.7% found for Antwerp. As mentioned above, factors other than cli-
mate may modify this impact of heat on daily mortality (Montero et al.,
2012).

The projected doubling in the number of hot days from the reference
period (2009–2013) to the end of the first future period (2045) over this
period is in line with other studies (Roldan et al., 2016). Evidently, this
increase in hot days is compatible with IPCC predictions (IPCC, 2013),
which indicate that heat waves will become increasingly frequent in
Europe. From the point of view of the health impact, heat-related
mortality increases, particularly under the no acclimatization scenario,
are also consistent with recent studies (Martinez et al., 2016).

While valid as a reference point, the no acclimatization scenario -

which also assumes no adaptation - is unrealistic. As mentioned, de-
mographic and socioeconomic factors might do, and will likely con-
tinue to influence the trend in mortality-inducing temperatures (Miron
et al., 2008). Furthermore, the impact of heat on mortality, far from
remaining constant, is changing over time with a decreasing trend
(Schifano et al., 2012), particularly for cardiovascular mortality (Ha
and Kim, 2013), while in the case of respiratory-cause mortality the
effect remains practically constant (Miron et al., 2015). This trend
seems to be linked to improvements in health services, socioeconomic
shifts, the provision of infrastructures for better living conditions and
the acclimatisation of the population to heat (Konkel, 2014).

Modelling the heat-acclimatization process through a rise in the
heatwave threshold temperature associated to a constant percentile of
future temperature series under climate change may serve to test
whether the adaptive processes currently being implemented are ade-
quate to the task in a changing climate. In the case of Antwerp, the heat-
related mortality threshold temperature across the period 2041–2045
should not exceed the present temperature of 26 °C by> 2 °C and for
period 2096–2100 should maintain about 5 °C above the present tem-
perature. Furthermore, it should also be borne in mind that annual
mortality will gradually rise over time, resulting in an increased heat-
related mortality as well.

Mention should be made of a number of possible limitations and
their ensuing biases. Firstly, with reference to the quality and con-
sistency of the data analysed, there may be misclassification of the
cause of mortality or admission, or errors related to the lack of data on
environmental variables. Secondly, with respect to methodological
limitations, essentially two should be highlighted: the shortcomings
inherent in a statistical method that works with a high number of
variables at a 95% confidence level. The fact that this is an ecological
study means that inferences cannot be made at an individual level,
since these would be exposed to the appearance of the ecological fallacy
due to the use of aggregate data. It is only possible to show the ex-
istence of a statistical association between the variables analysed.
Factors favouring the existence of a real, as opposed to a spurious-re-
lationship, are the high correlation index, increasing dose-response
relationship, absence of temporal ambiguity, biological plausibility of
the effect shown in clinical studies, and consistency of results obtained
by previous studies. Furthermore, in the case of estimates of the impact
of temperatures on mortality, various hypotheses were postulated, in-
cluding the assumption of mortality being constant over time, the re-
lated attributable risk remaining similarly constant, as well as the
mortality threshold temperature associated with the extreme tempera-
tures. In addition, there are great uncertainties inherent to population
projections, including migration, age structure and mortality rates, al-
beit these may arguably be more acceptable than the obvious alter-
native of assuming a constant population or a simplified model. Also,
our models did not account for potential changes in air pollution and
urban heat related to changes in traffic policy (e.g. the establishment of
a low emission zone) and in urban green (e.g. replacement of large old
city trees by new trees).

There are various ways to design and implement effective preven-
tion against the health impacts of heat. A common template to organize
such prevention is a Heat-health action plan (WHO, 2008) in which a
set or core elements and agencies hierarchically act upon and respond
to heat warnings. Many prevention plans were formulated following the

Table 5
Heat-related mortality by period, with the percentile corresponding to the mortality threshold temperature kept constant. Period 2081–2100.

Period Threshold (p96) Organic attributable mortality Daily organic attributable mortality Organic attributable mortality (every year)

2081–2085 30.26 °C 86.37 (24.31–150.35) 1.03 (0.29–1.79) 17.27 (4.86–30.07)
2086–2090 31.09 °C 95.36 (26.84–165.99) 1.14 (0.32–1.98) 19.07 (5.37–33.20)
2091–2095 30.07 °C 90.40 (25.44–157.35) 1.08 (0.30–1.87) 18.08 (5.09–31.47)
2096–2100 30.83 °C 97.11 (27.34–169.05) 1.16 (0.32–2.01) 19.42 (5.47–33.81)
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European heatwave in 2003. Currently various plans and additional
activities are in place to tackle the issues related to heat in the Antwerp
area. The Belgian National Heatwave plan defines a heatwave as a
period of at least three consecutive days where the mean maximum
temperature exceeds 30 °C and the mean minimum temperature ex-
ceeds 18 °C. The plan contains two warning levels: Level one is acti-
vated when two days with temperatures exceeding those mentioned
have occurred. Level two is activated when the definition of a heatwave
is fulfilled. Warnings are prepared during level one. The effectiveness of
this action plan has been examined and improvements considered (van
Loenhout et al., 2016). In addition to the National plan, the Flemish
Region authorities have designed and are in the process of im-
plementing a regional heat health action plan. In the proposed Flemish
heat action plan the level two warning level is activated when a cu-
mulative indicator of temperature, Tcumul, equals or exceeds 17 °C.
Tcumul is calculated as the sum of all degrees centigrade higher than
25 °C of the expected maximum temperature in a time window of five
days. This method would allow activation of heat action plans three
days in advance of an expected heatwave. The level two warning level
stays active until the maximum temperature expected is lower than
25 °C. A sensitivity analysis of this new threshold showed that the new
method resulted in longer activation periods of warning level two
compared to the heat plan active at present, but the frequency of ac-
tivation of level two did not differ between the two methods (Bustos-
Sierra et al., 2016). Moreover, the municipality of Antwerp itself plans
and runs every year a number of preventive activities. The results of this
study can help calibrate these preventive efforts, and put a long term
perspective on heat-health prevention in a changing climate.

5. Conclusions

Heat is causing significant excess summer mortality in Antwerp, and
this mortality may increase in the future in the absence of adequate
prevention, including the adaptation of such prevention to a changing
climate. Heat-health action plans and their activation should always be
based on the best available evidence, and specifically on activation
thresholds based on epidemiological data and analysis. The acclimati-
sation of the population should be accounted for, as should realistic
projections of demographic and mortality trends. More research is
needed to fulfil the local evidence gap for effective prevention against
heat, particularly in mid-sized urban agglomerations.
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