424 research outputs found

    Strategic priorities for respiratory syncytial virus (RSV) vaccine development

    Get PDF
    AbstractAlthough RSV has been a high priority for vaccine development, efforts to develop a safe and effective vaccine have yet to lead to a licensed product. Clinical and epidemiologic features of RSV disease suggest there are at least 4 distinct target populations for vaccines, the RSV naïve young infant, the RSV naïve child ≥6 months of age, pregnant women (to provide passive protection to newborns), and the elderly. These target populations raise different safety and efficacy concerns and may require different vaccination strategies. The highest priority target population is the RSV naïve child. The occurrence of serious adverse events associated with the first vaccine candidate for young children, formalin inactivated RSV (FI-RSV), has focused vaccine development for the young RSV naïve child on live virus vaccines. Enhanced disease is not a concern for persons previously primed by a live virus infection. A variety of live-attenuated viruses have been developed with none yet achieving licensure. New live-attenuated RSV vaccines are being developed and evaluated that maybe sufficiently safe and efficacious to move to licensure. A variety of subunit vaccines are being developed and evaluated primarily for adults in whom enhanced disease is not a concern. An attenuated parainfluenza virus 3 vector expressing the RSV F protein was evaluated in RSV naïve children. Most of these candidate vaccines have used the RSV F protein in various vaccine platforms including virus-like particles, nanoparticles, formulated with adjuvants, and expressed by DNA or virus vectors. The other surface glycoprotein, the G protein, has also been used in candidate vaccines.We now have tools to make and evaluate a wide range of promising vaccines. Costly clinical trials in the target population are needed to evaluate and select candidate vaccines for advancement to efficacy trials. Better data on RSV-associated mortality in developing countries, better estimates of the risk of long term sequelae such as wheezing after infection, better measures of protection in target populations, and data on the costs and benefits of vaccines for target populations are needed to support and justify funding this process. Addressing these challenges and needs should improve the efficiency and speed of achieving a safe and effective, licensed RSV vaccine

    Mutations at positions 186 and 194 in the HA gene of the 2009 H1N1 pandemic influenza virus improve replication in cell culture and eggs

    Get PDF
    Obtaining suitable seed viruses for influenza vaccines poses a challenge for public health authorities and manufacturers. We used reverse genetics to generate vaccine seed-compatible viruses from the 2009 pandemic swine-origin influenza virus. Comparison of viruses recovered with variations in residues 186 and 194 (based on the H3 numbering system) of the viral hemagglutinin showed that these viruses differed with respect to their ability to grow in eggs and cultured cells. Thus, we have demonstrated that molecular cloning of members of a quasispecies can help in selection of seed viruses for vaccine manufacture

    An empirical approach towards the efficient and optimal production of influenza-neutralizing ovine polyclonal antibodies demonstrates that the novel adjuvant CoVaccine HT(TM) is functionally superior to Freund's adjuvant

    Get PDF
    Passive immunotherapies utilising polyclonal antibodies could have a valuable role in preventing and treating infectious diseases such as influenza, particularly in pandemic situations but also in immunocompromised populations such as the elderly, the chronically immunosuppressed, pregnant women, infants and those with chronic diseases. The aim of this study was to optimise current methods used to generate ovine polyclonal antibodies. Polyclonal antibodies to baculovirus-expressed recombinant influenza haemagglutinin from A/Puerto Rico/8/1934 H1N1 (PR8) were elicited in sheep using various immunisation regimens designed to investigate the priming immunisation route, adjuvant formulation, sheep age, and antigen dose, and to empirically ascertain which combination maximised antibody output. The novel adjuvant CoVaccine HT™ was compared to Freund’s adjuvant which is currently the adjuvant of choice for commercial production of ovine polyclonal Fab therapies. CoVaccine HT™ induced significantly higher titres of functional ovine anti-haemagglutinin IgG than Freund’s adjuvant but with fewer side effects, including reduced site reactions. Polyclonal hyperimmune sheep sera effectively neutralised influenza virus in vitro and, when given before or after influenza virus challenge, prevented the death of infected mice. Neither the age of the sheep nor the route of antigen administration appeared to influence antibody titre. Moreover, reducing the administrated dose of haemagglutinin antigen minimally affected antibody titre. Together, these results suggest a cost effective way of producing high and sustained yields of functional ovine polyclonal antibodies specifically for the prevention and treatment of globally significant diseases.Natalie E. Stevens, Cara K. Fraser, Mohammed Alsharifi, Michael P. Brown, Kerrilyn R. Diener, John D. Haybal

    Analysis of genetic diversity and molecular evolution of human group B rotaviruses based on whole genome segments

    Get PDF
    Group B rotavirus (GBR) is a rare enteric pathogen that causes severe diarrhoea, primarily in adults. Nearly full-length sequences of all 11 RNA segments were determined for human GBRs detected recently in India (IDH-084 in 2007, IC-008 in 2008), Bangladesh (Bang117 in 2003) and Myanmar (MMR-B1 in 2007), and analysed phylogenetically with the sequence data of GBRs reported previously. All RNA segments of GBR strains from India, Bangladesh and Myanmar showed >95 % nucleotide sequence identities. Among the 11 RNA segments, the VP6 and NSP2 genes showed the highest identities (>98 %), whilst the lowest identities were observed in the NSP4 gene (96.1 %), NSP5 gene (95.6 %) and VP8*-encoding region of the VP4 gene (95.9 %). Divergent or conserved regions in the deduced amino acid sequences of GBR VP1–VP4 and NSP1–NSP5 were similar to those in group A rotaviruses (GARs), and the functionally important motifs and structural characteristics in viral proteins known for GAR were conserved in all of the human GBRs. These findings suggest that, whilst the degree of genetic evolution may be dependent on each RNA segment, human GBR may have been evolving in a similar manner to GAR, associated with the similar functional roles of individual viral proteins

    Novel Platforms for the Development of a Universal influenza vaccine

    Get PDF
    Despite advancements in immunotherapeutic approaches, influenza continues to cause severe illness, particularly among immunocompromised individuals, young children, and elderly adults. Vaccination is the most effective way to reduce rates of morbidity and mortality caused by influenza viruses. Frequent genetic shift and drift among influenzavirus strains with the resultant disparity between circulating and vaccine virus strains limits the effectiveness of the available conventional influenza vaccines. One approach to overcome this limitation is to develop a universal influenza vaccine that could provide protection against all subtypes of influenza viruses. Moreover, the development of a novel or improved universal influenza vaccines may be greatly facilitated by new technologies including virus-like particles, T-cell-inducing peptides and recombinant proteins, synthetic viruses, broadly neutralizing antibodies, and nucleic acid-based vaccines. This review discusses recent scientific advances in the development of next-generation universal influenza vaccines.Funding Agencies|GlaxoSmithKline Biologicals SA; Marie-Curie IEF grant SAMUFLU FP7-PEOPLE-IEF [626283]; Marie-Curie ITN grant HOMIN FP7-PEOPLE-ITN [626283]</p

    Malaria parasite CelTOS targets the inner leaflet of cell membranes for pore- dependent disruption

    Get PDF
    Apicomplexan parasites contain a conserved protein CelTOS that, in malaria parasites, is essential for traversal of cells within the mammalian host and arthropod vector. However, the molecular role of CelTOS is unknown because it lacks sequence similarity to proteins of known function. Here, we determined the crystal structure of CelTOS and discovered CelTOS resembles proteins that bind to and disrupt membranes. In contrast to known membrane disruptors, CelTOS has a distinct architecture, specifically binds phosphatidic acid commonly present within the inner leaflet of plasma membranes, and potently disrupts liposomes composed of phosphatidic acid by forming pores. Microinjection of CelTOS into cells resulted in observable membrane damage. Therefore, CelTOS is unique as it achieves nearly universal inner leaflet cellular activity to enable the exit of parasites from cells during traversal. By providing novel molecular insight into cell traversal by apicomplexan parasites, our work facilitates the design of therapeutics against global pathogens. DOI: http://dx.doi.org/10.7554/eLife.20621.00

    Antibody-based protection against HIV infection by vectored immunoprophylaxis

    Get PDF
    Despite tremendous efforts, development of an effective vaccine against human immunodeficiency virus (HIV) has proved an elusive goal. Recently, however, numerous antibodies have been identified that are capable of neutralizing most circulating HIV strains. These antibodies all exhibit an unusually high level of somatic mutation, presumably owing to extensive affinity maturation over the course of continuous exposure to an evolving antigen. Although substantial effort has focused on the design of immunogens capable of eliciting antibodies de novo that would target similar epitopes, it remains uncertain whether a conventional vaccine will be able to elicit analogues of the existing broadly neutralizing antibodies. As an alternative to immunization, vector-mediated gene transfer could be used to engineer secretion of the existing broadly neutralizing antibodies into the circulation. Here we describe a practical implementation of this approach, which we call vectored immunoprophylaxis (VIP), which in mice induces lifelong expression of these monoclonal antibodies at high concentrations from a single intramuscular injection. This is achieved using a specialized adeno-associated virus vector optimized for the production of full-length antibody from muscle tissue. We show that humanized mice receiving VIP appear to be fully protected from HIV infection, even when challenged intravenously with very high doses of replication-competent virus. Our results suggest that successful translation of this approach to humans may produce effective prophylaxis against HIV

    A Whole Virus Pandemic Influenza H1N1 Vaccine Is Highly Immunogenic and Protective in Active Immunization and Passive Protection Mouse Models

    Get PDF
    The recent emergence and rapid spread of a novel swine-derived H1N1 influenza virus has resulted in the first influenza pandemic of this century. Monovalent vaccines have undergone preclinical and clinical development prior to initiation of mass immunization campaigns. We have carried out a series of immunogenicity and protection studies following active immunization of mice, which indicate that a whole virus, nonadjuvanted vaccine is immunogenic at low doses and protects against live virus challenge. The immunogenicity in this model was comparable to that of a whole virus H5N1 vaccine, which had previously been demonstrated to induce high levels of seroprotection in clinical studies. The efficacy of the H1N1 pandemic vaccine in protecting against live virus challenge was also seen to be equivalent to that of the H5N1 vaccine. The protective efficacy of the H1N1 vaccine was also confirmed using a severe combined immunodeficient (SCID) mouse model. It was demonstrated that mouse and guinea pig immune sera elicited following active H1N1 vaccination resulted in 100% protection of SCID mice following passive transfer of immune sera and lethal challenge. The immune responses to a whole virus pandemic H1N1 and a split seasonal H1N1 vaccine were also compared in this study. It was demonstrated that the whole virus vaccine induced a balanced Th-1 and Th-2 response in mice, whereas the split vaccine induced mainly a Th-2 response and only minimal levels of Th-1 responses. These data supported the initiation of clinical studies with the same low doses of whole virus vaccine that had previously been demonstrated to be immunogenic in clinical studies with a whole virus H5N1 vaccine

    Unexpectedly high burden of rotavirus gastroenteritis in very young infants

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The highest incidence of rotavirus gastroenteritis has generally been reported in children 6-24 months of age. Young infants are thought to be partially protected by maternal antibodies acquired transplacentally or via breast milk. The purpose of our study was to assess the age distribution of children with confirmed community-acquired rotavirus gastroenteritis presenting to an urban referral hospital.</p> <p>Methods</p> <p>Children presenting to The Children's Hospital of Philadelphia with acute gastroenteritis have been monitored for the presence of rotavirus antigen in the stool by ELISA (followed by genotyping if ELISA-positive) since the 1994-95 epidemic season.</p> <p>Results</p> <p>Over the last 12 rotavirus seasons prior to the introduction of the pentavalent rotavirus vaccine in 2006, stool specimens from 1646 patients tested positive for community-acquired rotavirus infection. Gender or age was not recorded in 6 and 5 cases, respectively. Overall, 58% of the cases occurred in boys. G1 was the predominant VP7 serotype, accounting for 72% of cases. The median (IQR) age was 11 (5-21) months. A total of 790 (48%) cases occurred in children outside the commonly quoted peak age range, with 27% in infants <6 months of age and 21% in children >24 months of age. A total of 220 (13%) cases occurred during the first 3 months of life, and the highest number of episodes per month of age [97 (6%)] was observed during the second month of life.</p> <p>Conclusions</p> <p>The incidence of community-acquired rotavirus gastroenteritis monitored over 12 seasons in the prevaccine era at a major university hospital was nearly constant for each month of age during the first year of life, revealing an unexpectedly high incidence of symptomatic rotavirus disease in infants <3 months old. A sizeable fraction of cases occurred in children too young to have been vaccinated according to current recommendations.</p
    corecore