1,776 research outputs found

    A genetic diversity study of antifungal Lactobacillus plantarum isolates

    Get PDF
    Lactobacillus plantarum is a lactic acid bacterium commonly found on fruits and vegetables and also used in a variety of food fermentations. Strains from this species are also regularly reported as having antifungal or probiotic activity. Genotyping methods can be used to differentiate strains of the same species thus determining if strains are related or not. However for L.\ua0plantarum, the currently used methods have limitations including DNA band profile interpretation difficulty and cost. In this study, a new genotyping method based on multi-locus variable number tandem repeat analysis (MLVA) was developed and compared to a previously reported randomly amplified polymorphic DNA-PCR (RAPD-PCR) method for L.\ua0plantarum. With a selection of 13 antifungal strains of L.\ua0plantarum isolated from heterogeneous sources (cheese, silage, sauerkraut, vegetables and a probiotic product), RAPD-PCR revealed 9 different profiles resulting in a Hunter-Gaston discrimination index (D-value) of 0.94. The new MLVA method which compares the lengths of 4 repetitive regions within LPXTG motif-containing surface protein genes differentiated the 13\ua0L.\ua0plantarum strains into 10 different subtypes leading to a D-value of 0.95. Interestingly 11 additional L.\ua0plantarum isolates obtained in a previous study during a screen for antifungal activity against the common cheese spoilage mould Penicillium commune all possessed the same RAPD-PCR and MLVA profile as each other and the commercial probiotic strain L.\ua0plantarum 299v. This study demonstrates that the new MLVA method can be used to simply and inexpensively differentiate L.\ua0plantarum strains and provide information regarding strain relatedness and thus potential insight into strain properties

    Intelligent diagnostic scheme for lung cancer screening with Raman spectra data by tensor network machine learning

    Full text link
    Artificial intelligence (AI) has brought tremendous impacts on biomedical sciences from academic researches to clinical applications, such as in biomarkers' detection and diagnosis, optimization of treatment, and identification of new therapeutic targets in drug discovery. However, the contemporary AI technologies, particularly deep machine learning (ML), severely suffer from non-interpretability, which might uncontrollably lead to incorrect predictions. Interpretability is particularly crucial to ML for clinical diagnosis as the consumers must gain necessary sense of security and trust from firm grounds or convincing interpretations. In this work, we propose a tensor-network (TN)-ML method to reliably predict lung cancer patients and their stages via screening Raman spectra data of Volatile organic compounds (VOCs) in exhaled breath, which are generally suitable as biomarkers and are considered to be an ideal way for non-invasive lung cancer screening. The prediction of TN-ML is based on the mutual distances of the breath samples mapped to the quantum Hilbert space. Thanks to the quantum probabilistic interpretation, the certainty of the predictions can be quantitatively characterized. The accuracy of the samples with high certainty is almost 100%\%. The incorrectly-classified samples exhibit obviously lower certainty, and thus can be decipherably identified as anomalies, which will be handled by human experts to guarantee high reliability. Our work sheds light on shifting the ``AI for biomedical sciences'' from the conventional non-interpretable ML schemes to the interpretable human-ML interactive approaches, for the purpose of high accuracy and reliability.Comment: 10 pages, 7 figure

    Positive Selection Drove the Adaptation of Mitochondrial Genes to the Demands of Flight and High-Altitude Environments in Grasshoppers

    Get PDF
    The molecular evolution of mitochondrial genes responds to changes in energy requirements and to high altitude adaptation in animals, but this has not been fully explored in invertebrates. The evolution of atmospheric oxygen content from high to low necessarily affects the energy requirements of insect movement. We examined 13 mitochondrial protein-coding genes (PCGs) of grasshoppers to test whether the adaptive evolution of genes involved in energy metabolism occurs in changes in atmospheric oxygen content and high altitude adaptation. Our molecular evolutionary analysis of the 13 PCGs in 15 species of flying grasshoppers and 13 related flightless grasshoppers indicated that, similar to previous studies, flightless grasshoppers have experienced relaxed selection. We found evidence of significant positive selection in the genes ATP8, COX3, ND2, ND4, ND4L, ND5, and ND6 in flying lineages. This results suggested that episodic positive selection allowed the mitochondrial genes of flying grasshoppers to adapt to increased energy demands during the continuous reduction of atmospheric oxygen content. Our analysis of five grasshopper endemic to the Tibetan Plateau and 13 non-Tibetan grasshoppers indicated that, due to positive selection, more non-synonymous nucleotide substitutions accumulated in Tibetan grasshoppers than in non-Tibetan grasshoppers. We also found evidence for significant positive selection in the genes ATP6, ND2, ND3, ND4, and ND5 in Tibetan lineages. Our results thus strongly suggest that, in grasshoppers, positive selection drives mitochondrial genes to better adapt both to the energy requirements of flight and to the high altitude of the Tibetan Plateau

    Sicyos angulatus ameliorates atherosclerosis through downregulation of aortic inflammatory responses in apolipoprotein E-deficient mice

    Get PDF
    Sicyos angulatus (SA), a summer annual vine originating from Northeastern USA, is a widely distributed noxious invasive plant. However, the clinical application of SA has not been investigated previously. The purpose of present study was to determine the effects of SA on atherosclerosis and its underlying mechanism. Atherosclerosis was induced by feeding apolipoprotein E-deficient (apoE(-/-)) mice with an atherogenic diet for 8 weeks. SA was administered daily by oral gavage during induction of atherosclerosis. ApoE(-/-) mice treated with SA demonstrated a significant reduction in atherosclerotic plaque area in the whole aorta and aortic sinus compared with vehicle-treated mice. The plasma lipid profiles, including triglyceride, total cholesterol, high-density lipoprotein and low-density lipoprotein, were not affected by SA administration. Of note, gene expression levels of proatherogenic cytokines including tumor necrosis factor alpha (Tnf alpha) and interleukin-6 (Il-6) were significantly decreased in the aorta of SA administered apoE(-/-) mice. In lipopolysaccharide-stimulated RAW 264.7 macrophage cells, SA also inhibited the induction Tnfa, Il-6 and Il-1 beta in a dose-dependent manner. Furthermore, gene expression levels of endothelial cell adhesion molecules, including vascular cell adhesion protein 1 and intercellular adhesion molecule 1 were reduced in the aorta of apoE(-/-) mice treated with SA, which was followed by diminished aortic infiltration of monocytes/macrophages. In conclusion, to the best of our knowledge, this is the first study to demonstrate that SA is able to suppress the development of atherosclerosis by inhibiting the aortic expression of proinflammatory factors in atherogenic diet-fed apoE(-/-) mice. The present study may provide novel insights into the application of the environmentally problematic weed SA as a therapeutically effective natural product for preventing atherosclerosis.N

    A Chinese Herbal Decoction, Danggui Buxue Tang, Stimulates Proliferation, Differentiation and Gene Expression of Cultured Osteosarcoma Cells: Genomic Approach to Reveal Specific Gene Activation

    Get PDF
    Danggui Buxue Tang (DBT), a Chinese herbal decoction used to treat ailments in women, contains Radix Astragali (Huangqi; RA) and Radix Angelicae Sinensis (Danggui; RAS). When DBT was applied onto cultured MG-63 cells, an increase of cell proliferation and differentiation of MG-63 cell were revealed: both of these effects were significantly higher in DBT than RA or RAS extract. To search for the biological markers that are specifically regulated by DBT, DNA microarray was used to reveal the gene expression profiling of DBT in MG-63 cells as compared to that of RA- or RAS-treated cells. Amongst 883 DBT-regulated genes, 403 of them are specifically regulated by DBT treatment, including CCL-2, CCL-7, CCL-8, and galectin-9. The signaling cascade of this DBT-regulated gene expression was also elucidated in cultured MG-63 cells. The current results reveal the potential usage of this herbal decoction in treating osteoporosis and suggest the uniqueness of Chinese herbal decoction that requires a well-defined formulation. The DBT-regulated genes in the culture could serve as biological responsive markers for quality assurance of the herbal preparation

    Therapeutic Effect of Large Channel Endoscopic Decompression in Lumbar Spinal Stenosis

    Get PDF
    Background: Percutaneous endoscopic decompression (PED) is a minimally invasive surgical technique that is now used for not only disc herniation but also lumbar spinal stenosis (LSS). However, few studies have reported endoscopic surgery for LSS. Therefore, we conducted this study to evaluate the outcomes and safety of large channel endoscopic decompression.Methods: Forty-one patients diagnosed with LSS who underwent PED surgery were included in the study. The estimated blood loss, operative time, length of hospital stay, hospital costs, reoperations, complications, visual analogue scale (VAS) score, Oswestry Disability Index (ODI) score, Japanese Orthopaedic Association (JOA) score and SF-36 physical-component summary scores were assessed. Preoperative and postoperative continuous data were compared through paired-samples t-tests. The significance level for all analyses was defined as p < 0.05.Results: A total of 41 consecutive patients underwent PED, including 21 (51.2%) males and 20 (48.8%) females. The VAS and ODI scores decreased from preoperatively to postoperatively, but the JOA and SF-36 physical component summary scores significantly increased. The VAS (lumbar) score decreased from 5.05 ± 2.33 to 0.45 ± 0.71 (P = 0.000); the VAS (leg) score decreased from 5.51 ± 2.82 to 0.53 ± 0.72 (P = 0.000); the ODI score decreased from 52.80 ± 20.41 to 4.84 ± 3.98 (P = 0.000), and the JOA score increased from 11.73 ± 4.99 to 25.32 ± 2.12 (P = 0.000). Only 1 patient experienced an intraoperative complication (2.4%; dural tear), and 1 patient required reoperation (2.4%).Conclusions: Surgical treatment for LSS is to sufficiently decompress and minimize the trauma and complications caused by surgery. This study did not reveal any obvious shortcomings of PED and suggested PED is a safe and effective treatment for LSS

    Chinese herb related molecules of cancer-cell-apoptosis: a minireview of progress between Kanglaite injection and related genes

    Get PDF
    Many kinds of Chinese herb had been confirmed to have the character of anti-tumor, clinical reports about anti-tumor effects of Chinese herb had also been found in recent years, but most of the reports were focused on the clinical treatment of effectiveness for Chinese herb, on the other hand, review about Chinese herbal related with molecules on cancer-cell-apoptosis was seldom, many scientists could not believe such kinds of clinical describes about anti-tumor effects for Chinese herb, because these describes were lack of molecular biology evidence. Kanglaite(KLT) injection is an anti-tumor new drug which extracts from Chinese medicine-coix seed with modern advanced pharmaceutical technology, it is also a new biphase extended-spectrum anticancer medicine, the food and drug administration(FDA) of United States also approved a phase II trial of KLT to test its efficacy in treating non-small-cell lung cancer. Some studies show it could inhibit some anti-apoptotic gene and activate some pro-apoptotic gene, its injection solution is one of the new anticancer medicine that can significantly inhibit a various kinds of tumor cells, so it has become the core of research that how to further explore KLT injection to promote tumor cell apoptosis by impacting on related genes. In this review, the relationship between KLT and some tumor cell apoptosis molecules had been discussed and reviewed generally

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
    corecore