24 research outputs found

    ELUM: User-friendly spatial modelling tool predicts net soil greenhouse gas balance of bioenergy land-use change in UK up to 2050

    Get PDF
    The ELUM Software Package spatially predicts the net soil greenhouse gas balance of land-use change to grow energy crops in the UK up to 2050. It is able to support a range of analyses of bioenergy, and was developed in consultation with anticipated users. Results can be obtained according to specific interests, viewed in the graphical interface and exported for a variety of purposes. The functionality of the software is demonstrated through different case studies, which show an array of applications

    Simulation of greenhouse gases following land-use change to bioenergy crops using the ECOSSE model : a comparison between site measurements and model predictions

    Get PDF
    This work contributes to the ELUM (Ecosystem Land Use Modelling & Soil Carbon GHG Flux Trial) project, which was commissioned and funded by the Energy Technologies Institute (ETI). We acknowledge the E-OBS data set from the EU-FP6 project ENSEMBLES (http://ensembles-eu.metoffice.com) and the data providers in the ECA&D project (http://www.ecad.eu).Peer reviewedPublisher PD

    Management-induced changes in soil organic carbon on global croplands

    Get PDF
    Soil organic carbon (SOC), one of the largest terrestrial carbon (C) stocks on Earth, has been depleted by anthropogenic land cover change and agricultural management. However, the latter has so far not been well represented in global C stock assessments. While SOC models often simulate detailed biochemical processes that lead to the accumulation and decay of SOC, the management decisions driving these biophysical processes are still little investigated at the global scale. Here we develop a spatially explicit data set for agricultural management on cropland, considering crop production levels, residue returning rates, manure application, and the adoption of irrigation and tillage practices. We combine it with a reduced-complexity model based on the Intergovernmental Panel on Climate Change (IPCC) tier 2 method to create a half-degree resolution data set of SOC stocks and SOC stock changes for the first 30 cm of mineral soils. We estimate that, due to arable farming, soils have lost around 34.6 GtC relative to a counterfactual hypothetical natural state in 1975. Within the period 1975–2010, this SOC debt continued to expand by 5 GtC (0.14 GtC yr−1) to around 39.6 GtC. However, accounting for historical management led to 2.1 GtC fewer (0.06 GtC yr−1) emissions than under the assumption of constant management. We also find that management decisions have influenced the historical SOC trajectory most strongly by residue returning, indicating that SOC enhancement by biomass retention may be a promising negative emissions technique. The reduced-complexity SOC model may allow us to simulate management-induced SOC enhancement – also within computationally demanding integrated (land use) assessment modeling.</p

    Management-induced changes in soil organic carbon on global croplands

    Get PDF
    Funding Information: The work of Kristine Karstens has been funded by the DFG Priority Program “Climate Engineering: Risks, Challenges, Opportunities?” (SPP 1689), specifically the CEMICS2 project (grant no. ED78/3-2), and by the CDRSynTra project (grant no. 01LS2101G) funded by the German Federal Ministry of Education and Research (BMBF). The research leading to these results has received funding for Benjamin Leon Bodirsky from the European Union's Horizon 2020 Research And Innovation Programme (grant nos. 776479 (COACCH) and 821010 (CASCADES)). Benjamin Leon Bodirsky acknowledges support by the project ABCDR (grant no. 01LS2105A) funded by the BMBF. The work of Susanne Rolinski, Jens Heinke, and Isabelle Weindl has also been supported by CLIMASTEPPE (grant no. 01DJ8012), EXIMO (grant no. 01LP1903D), and FOCUS (grant no. 031B0787B), all funded by the BMBF. The input of Pete Smith, Matthias Kuhnert, and Marta Dondini contributes to the Soils-R-GGREAT project (grant no. NE/P019455/1) and CIRCASA (EU H2020; grant no. 774378). Publisher Copyright: Copyright © 2022 Kristine Karstens et al.Peer reviewedPublisher PD

    Characterising the biophysical, economic and social impacts of soil carbon sequestration as a greenhouse gas removal technology

    Get PDF
    To limit warming to well below 2°C, most scenario projections rely on greenhouse gas removal technologies (GGRTs); one such GGRT uses soil carbon sequestration (SCS) in agricultural land. In addition to their role in mitigating climate change, SCS practices play a role in delivering agroecosystem resilience, climate change adaptability, and food security. Environmental heterogeneity and differences in agricultural practices challenge the practical implementation of SCS, and our analysis addresses the associated knowledge gap. Previous assessments have focused on global potentials, but there is a need among policy makers to operationalise SCS. Here, we assess a range of practices already proposed to deliver SCS, and distil these into a subset of specific measures. We provide a multi‐disciplinary summary of the barriers and potential incentives toward practical implementation of these measures. First, we identify specific practices with potential for both a positive impact on SCS at farm level, and an uptake rate compatible with global impact. These focus on: a. optimising crop primary productivity (e.g. nutrient optimisation, pH management, irrigation) b. reducing soil disturbance and managing soil physical properties (e.g. improved rotations, minimum till) c. minimising deliberate removal of C or lateral transport via erosion processes (e.g. support measures, bare fallow reduction) d. addition of C produced outside the system (e.g. organic manure amendments, biochar addition) e. provision of additional C inputs within the cropping system (e.g. agroforestry, cover cropping) We then consider economic and non‐cost barriers and incentives for land managers implementing these measures, along with the potential externalised impacts of implementation. This offers a framework and reference point for holistic assessment of the impacts of SCS. Finally, we summarise and discuss the ability of extant scientific approaches to quantify the technical potential and externalities of SCS measures, and the barriers and incentives to their implementation in global agricultural systems

    High resolution spatial modelling of greenhouse gas emissions from land use change to energy crops in the UK

    No full text
    We implemented a spatial application of a previously evaluated model of soil GHG emissions, ECOSSE, in the United Kingdom to examine the impacts to 2050 of land-use transitions from existing land use, rotational cropland, permanent grassland or woodland, to six bioenergy crops; three ‘first-generation’ energy crops: oilseed rape, wheat and sugar beet, and three ‘second-generation’ energy crops: Miscanthus, short rotation coppice willow (SRC) and short rotation forestry poplar (SRF). Conversion of rotational crops to Miscanthus, SRC and SRF and conversion of permanent grass to SRF show beneficial changes in soil GHG balance over a significant area. Conversion of permanent grass to Miscanthus, permanent grass to SRF and forest to SRF shows detrimental changes in soil GHG balance over a significant area. Conversion of permanent grass to wheat, oilseed rape, sugar beet and SRC and all conversions from forest show large detrimental changes in soil GHG balance over most of the United Kingdom, largely due to moving from uncultivated soil to regular cultivation. Differences in net GHG emissions between climate scenarios to 2050 were not significant. Overall, SRF offers the greatest beneficial impact on soil GHG balance. These results provide one criterion for selection of bioenergy crops and do not consider GHG emission increases/decreases resulting from displaced food production, bio-physical factors (e.g. the energy density of the crop) and socio-economic factors (e.g. expenditure on harvesting equipment). Given that the soil GHG balance is dominated by change in soil organic carbon (SOC) with the difference among Miscanthus, SRC and SRF largely determined by yield, a target for management of perennial energy crops is to achieve the best possible yield using the most appropriate energy crop and cultivar for the local situation

    Soil science challenges in a new era: A transdisciplinary overview of relevant topics

    Get PDF
    Concise ReviewTransdisciplinary approaches that provide holistic views are essential to properly understand soil processes and the importance of soil to society and will be crucial in the future to integrate distinct disciplines into soil studies. A myriad of challenges faces soil science at the beginning of the 2020s. The main aim of this overview is to assess past achievements and current challenges regarding soil threats such as erosion and soil contamination related to different United Nations sustainable development goals (SDGs) including (1) sustainable food production, (2) ensure healthy lives and reduce environmental risks (SDG3), (3) ensure water availability (SDG6), and (4) enhanced soil carbon sequestration because of climate change (SDG13). Twenty experts from different disciplines related to soil sciences offer perspectives on important research directions. Special attention must be paid to some concerns such as (1) effective soil conservation strategies; (2) new computational technologies, models, and in situ measurements that will bring new insights to in-soil process at spatiotemporal scales, their relationships, dynamics, and thresholds; (3) impacts of human activities, wildfires, and climate change on soil microorganisms and thereby on biogeochemical cycles and water relationships; (4) microplastics as a new potential pollutant; (5) the development of green technologies for soil rehabilitation; and (6) the reduction of greenhouse gas emissions by simultaneous soil carbon sequestration and reduction in nitrous oxide emission. Manuscripts on topics such as these are particularly welcomed in Air, Soil and Water Researchinfo:eu-repo/semantics/publishedVersio

    How does management affect soil C sequestration and greenhouse gas fluxes in boreal and temperate forests? : A review

    Get PDF
    Acknowledgements This review has been supported by the grant Holistic management practices, modelling and monitoring for European forest soils – HoliSoils (EU Horizon 2020 Grant Agreement No 101000289) and the Academy of Finland Fellow project (330136, B. Adamczyk). In addition to the HoliSoils consortium partners, Dr. Abramoff contributed on this study and her work was supported by the United States Department of Energy, Office of Science, Office of Biological and Environmental Research. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the United States Department of Energy under contract DE-AC05-00OR22725.Peer reviewedPublisher PD

    A global, empirical, harmonised dataset of soil organic carbon changes under perennial crops

    Get PDF
    A global, unified dataset on Soil Organic Carbon (SOC) changes under perennial crops has not existed till now. We present a global, harmonised database on SOC change resulting from perennial crop cultivation. It contains information about 1605 paired-comparison empirical values (some of which are aggregated data) from 180 different peer-reviewed studies, 709 sites, on 58 different perennial crop types, from 32 countries in temperate, tropical and boreal areas; including species used for food, bioenergy and bio-products. The database also contains information on climate, soil characteristics, management and topography. This is the first such global compilation and will act as a baseline for SOC changes in perennial crops. It will be key to supporting global modelling of land use and carbon cycle feedbacks, and supporting agricultural policy development
    corecore