92 research outputs found

    Simultaneous Reduced Basis Approximation of Parameterized Elliptic Eigenvalue Problems

    Get PDF
    The focus is on a model reduction framework for parameterized elliptic eigenvalue problems by a reduced basis method. In contrast to the standard single output case, one is interested in approximating several outputs simultaneously, namely a certain number of the smallest eigenvalues. For a fast and reliable evaluation of these input-output relations, we analyze a posteriori error estimators for eigenvalues. Moreover, we present different greedy strategies and study systematically their performance. Special attention needs to be paid to multiple eigenvalues whose appearance is parameter-dependent. Our methods are of particular interest for applications in vibro-acoustics

    On Multilevel Methods Based on Non-Nested Meshes

    Get PDF
    This thesis is concerned with multilevel methods for the efficient solution of partial differential equations in the field of scientific computing. Further, emphasis is put on an extensive study of the information transfer between finite element spaces associated with non-nested meshes. For the discretization of complicated geometries with a finite element method, unstructured meshes are often beneficial as they can easily be adjusted to the shape of the computational domain. Such meshes, and thus the corresponding discrete function spaces, do not allow for straightforward multilevel hierarchies that could be exploited to construct fast solvers. In the present thesis, we present a class of "semi-geometric" multilevel iterations, which are based on hierarchies of independent, non-nested meshes. This is realized by a variational approach such that the images of suitable prolongation operators in the next (finer) space recursively determine the coarse level spaces. The semi-geometric concept is of very general nature compared with other methods relying on geometric considerations. This is reflected in the relatively loose relations of the employed meshes to each other. The specific benefit of the approach based on non-nested meshes is the flexibility in the choice of the coarse meshes, which can, for instance, be generated independently by standard methods. The resolution of the boundaries of the actual computational domain in the constructed coarse level spaces is a characteristic feature of the devised class of methods. The flexible applicability and the efficiency of the presented solution methods is demonstrated in a series of numerical experiments. We also explain the practical implementation of the semi-geometric ideas and concrete transfer concepts between non-nested meshes. Moreover, an extension to a semi-geometric monotone multigrid method for the solution of variational inequalities is discussed. We carry out the analysis of the convergence and preconditioning properties, respectively, in the framework of the theory of subspace correction methods. Our technical considerations yield a quasi-optimal result, which we prove for general, shape regular meshes by local arguments. The relevant properties of the operators for the prolongation between non-nested finite element spaces are the H1-stability and an L2-approximation property as well as the locality of the transfer. This thesis is a contribution to the development of fast solvers for equations on complicated geometries with focus on geometric techniques (as opposed to algebraic ones). Connections to other approaches are carefully elaborated. In addition, we examine the actual information transfer between non-nested finite element spaces. In a novel study, we combine theoretical, practical and experimental considerations. A thourough investigation of the qualitative properties and a quantitative analysis of the differences of individual transfer concepts to each other lead to new results on the information transfer as such. Finally, by the introduction of a generalized projection operator, the pseudo-L2-projection, we obtain a significantly better approximation of the actual L2-orthogonal projection than other approaches from the literature.Nicht-geschachtelte Gitter in Multilevel-Verfahren Diese Arbeit beschäftigt sich mit Multilevel-Verfahren zur effizienten Lösung von Partiellen Differentialgleichungen im Bereich des Wissenschaftlichen Rechnens. Dabei liegt ein weiterer Schwerpunkt auf der eingehenden Untersuchung des Informationsaustauschs zwischen Finite-Elemente-Räumen zu nicht-geschachtelten Gittern. Zur Diskretisierung von komplizierten Geometrien mit einer Finite-Elemente-Methode sind unstrukturierte Gitter oft von Vorteil, weil sie der Form des Rechengebiets einfacher angepasst werden können. Solche Gitter, und somit die zugehörigen diskreten Funktionenräume, besitzen im Allgemeinen keine leicht zugängliche Multilevel-Struktur, die sich zur Konstruktion schneller Löser ausnutzen ließe. In der vorliegenden Arbeit stellen wir eine Klasse "semi-geometrischer" Multilevel-Iterationen vor, die auf Hierarchien voneinander unabhängiger, nicht-geschachtelter Gitter beruhen. Dabei bestimmen in einem variationellen Ansatz rekursiv die Bilder geeigneter Prolongationsoperatoren im jeweils folgenden (feineren) Raum die Grobgitterräume. Das semi-geometrische Konzept ist sehr allgemeiner Natur verglichen mit anderen Verfahren, die auf geometrischen Überlegungen beruhen. Dies zeigt sich in der verhältnismäßig losen Beziehung der verwendeten Gitter zueinander. Der konkrete Nutzen des Ansatzes mit nicht-geschachtelten Gittern ist die Flexibilität der Wahl der Grobgitter. Diese können beispielsweise unabhängig mit Standardverfahren generiert werden. Die Auflösung des Randes des tatsächlichen Rechengebiets in den konstruierten Grobgitterräumen ist eine Eigenschaft der entwickelten Verfahrensklasse. Die flexible Einsetzbarkeit und die Effizienz der vorgestellten Lösungsverfahren zeigt sich in einer Reihe von numerischen Experimenten. Dazu geben wir Hinweise zur praktischen Umsetzung der semi-geometrischen Ideen und konkreter Transfer-Konzepte zwischen nicht-geschachtelten Gittern. Darüber hinaus wird eine Erweiterung zu einem semi-geometrischen monotonen Mehrgitterverfahren zur Lösung von Variationsungleichungen untersucht. Wir führen die Analysis der Konvergenz- bzw. Vorkonditionierungseigenschaften im Rahmen der Theorie der Teilraumkorrekturmethoden durch. Unsere technische Ausarbeitung liefert ein quasi-optimales Resultat, das wir mithilfe lokaler Argumente für allgemeine, shape-reguläre Gitterfamilien beweisen. Als relevante Eigenschaften der Operatoren zur Prolongation zwischen nicht-geschachtelten Finite-Elemente-Räumen erweisen sich die H1-Stabilität und eine L2-Approximationseigenschaft sowie die Lokalität des Transfers. Diese Arbeit ist ein Beitrag zur Entwicklung schneller Löser für Gleichungen auf komplizierten Gebieten mit Schwerpunkt auf geometrischen Techniken (im Unterschied zu algebraischen). Verbindungen zu anderen Ansätzen werden sorgfältig aufgezeigt. Daneben untersuchen wir den Informationsaustausch zwischen nicht-geschachtelten Finite-Elemente-Räumen als solchen. In einer neuartigen Studie verbinden wir theoretische, praktische und experimentelle Überlegungen. Eine sorgfältige Prüfung der qualitativen Eigenschaften sowie eine quantitative Analyse der Unterschiede verschiedener Transfer-Konzepte zueinander führen zu neuen Ergebnissen bezüglich des Informationsaustauschs selbst. Schließlich erreichen wir durch die Einführung eines verallgemeinerten Projektionsoperators, der Pseudo-L2-Projektion, eine deutlich bessere Approximation der eigentlichen L2-orthogonalen Projektion als andere Ansätze aus der Literatur

    Berechnungen zu den Magnetfeldkorrekturspulen am THe-Trap-Experiment

    No full text
    The Tritium-Helium-Trap-Experiment (THe-Trap) at the Max-Planck-Institut fĂĽr Kernphysik in Heidelberg is a Penning-trap mass spectrometer which aims to measure the mass ratio of tritium to helium-3 with a relative precision of 10-11. To correct for inhomogeneities of the magnetic field a set of correction coils is installed on the trap envelope. The magnetic field of extended coils is derived theoretically and checked with a simulation of the coil geometry in COMSOL Multiphysics. The series coefficients at the precision trap center of the correction coils are calculated in accordance to the design values. Deviations of these components are dominated by the misalignment of the coils relative to the trap center. The magnetic field is calculated on and off axis, the series coefficients are in particular also determined in the storage trap center. Mechanical influences due to the external magnetic fields are investigated and found to be mostly harmless to the setup. At last an alternative coil geometry, which offers better spatial homogeneity of the coefficients, is discussed

    Evaluating Local Approximations of the L 2-Orthogonal Projection Between Non-Nested Finite Element Spaces

    Get PDF
    We present quantitative studies of transfer operators between finite element spaces associated with unrelated meshes. Several local approximations of the global L2-orthogonal projection are reviewed and evaluated computationally. The numerical studies in 3D provide the first estimates of the quantitative differences between a range of transfer operators between non-nested finite element spaces. We consider the standard finite element interpolation, Clément's quasi-interpolation with different local polynomial degrees, the global L 2-orthogonal projection, a local L 2-quasi-projection via a discrete inner product, and a pseudo-L 2-projection defined by a Petrov-Galerkin variational equation with a discontinuous test space. Understanding their qualitative and quantitative behaviors in this computational way is interesting per se; it could also be relevant in the context of discretization and solution techniques which make use of different non-nested meshes. It turns out that the pseudo-L 2-projection approximates the actual L 2-orthogonal projection best. The obtained results seem to be largely independent of the underlying computational domain; this is demonstrated by four examples (ball, cylinder, half torus and Stanford Bunny

    Asparagine bioavailability governs metastasis in a model of breast cancer.

    Get PDF
    Using a functional model of breast cancer heterogeneity, we previously showed that clonal sub-populations proficient at generating circulating tumour cells were not all equally capable of forming metastases at secondary sites. A combination of differential expression and focused in vitro and in vivo RNA interference screens revealed candidate drivers of metastasis that discriminated metastatic clones. Among these, asparagine synthetase expression in a patient's primary tumour was most strongly correlated with later metastatic relapse. Here we show that asparagine bioavailability strongly influences metastatic potential. Limiting asparagine by knockdown of asparagine synthetase, treatment with l-asparaginase, or dietary asparagine restriction reduces metastasis without affecting growth of the primary tumour, whereas increased dietary asparagine or enforced asparagine synthetase expression promotes metastatic progression. Altering asparagine availability in vitro strongly influences invasive potential, which is correlated with an effect on proteins that promote the epithelial-to-mesenchymal transition. This provides at least one potential mechanism for how the bioavailability of a single amino acid could regulate metastatic progression

    Integrated Heart - Coupling multiscale and multiphysics models for the simulation of the cardiac function

    Get PDF
    Mathematical modelling of the human heart and its function can expand our understanding of various cardiac diseases, which remain the most common cause of death in the developed world. Like other physiological systems, the heart can be understood as a complex multiscale system involving interacting phenomena at the molecular, cellular, tissue, and organ levels. This article addresses the numerical modelling of many aspects of heart function, including the interaction of the cardiac electrophysiology system with contractile muscle tissue, the sub-cellular activation-contraction mechanisms, as well as the hemodynamics inside the heart chambers. Resolution of each of these sub-systems requires separate mathematical analysis and specially developed numerical algorithms, which we review in detail. By using specific sub-systems as examples, we also look at systemic stability, and explain for example how physiological concepts such as microscopic force generation in cardiac muscle cells, translate to coupled systems of differential equations, and how their stability properties influence the choice of numerical coupling algorithms. Several numerical examples illustrate three fundamental challenges of developing multiphysics and multiscale numerical models for simulating heart function, namely: (i) the correct upscaling from single-cell models to the entire cardiac muscle, (ii) the proper coupling of electrophysiology and tissue mechanics to simulate electromechanical feedback, and (iii) the stable simulation of ventricular hemodynamics during rapid valve opening and closure

    Wie sich ein Berufsfeld etabliert. Der Diplomstudiengang Erziehungswissenschaft in Koblenz im Urteil seiner AbsolventInnen 1970 - 2000

    Full text link
    Der Diplomstudiengang Erziehungswissenschaft an der Koblenzer Universität feierte 2001 sein 30jähriges Bestehen. Im Vergleich zur dominierenden Lehramtsausbildung führte der Diplomstudiengang lange Jahre eher ein Schattendasein. Seit Mitte der 90er Jahre stiegen sowohl die Studierenden- als auch die Absolventenzahlen stetig an. Auch der Generationswechsel der Lehrenden forderte Neuorientierung und Perspektivenwechsel in der Studienorganisation heraus. Dieser Artikel wird im zeitlichen Verlauf die konzeptionellen Veränderungen des Diplomstudiengangs in Koblenz aufzeigen. Es wird Bezug genommen auf aktuelle Anforderungen der Berufsqualifizierung im Studiengang Erziehungswissenschaft in Koblenz. Anschließend werden Thesen für die Berufsqualifizierung des Studienganges Erziehungswissenschaft herausgearbeitet. (DIPF/Orig.
    • …
    corecore