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Abstract. We present quantitative studies of transfer operators between finite ele-

ment spaces associated with unrelated meshes. Several local approximations of the
global L2-orthogonal projection are reviewed and evaluated computationally. The

numerical studies in 3D provide the first estimates of the quantitative differences
between a range of transfer operators between non-nested finite element spaces.

We consider the standard finite element interpolation, Clément’s quasi-interpolation

with different local polynomial degrees, the global L2-orthogonal projection, a local
L2-quasi-projection via a discrete inner product, and a pseudo-L2-projection defined

by a Petrov-Galerkin variational equation with a discontinuous test space. Under-

standing their qualitative and quantitative behaviors in this computational way is
interesting per se; it could also be relevant in the context of discretization and solu-

tion techniques which make use of different non-nested meshes. It turns out that the
pseudo-L2-projection approximates the actual L2-orthogonal projection best. The

obtained results seem to be largely independent of the underlying computational

domain; this is demonstrated by four examples (ball, cylinder, half torus and Stan-
ford Bunny).

AMS subject classifications: 65D05, 65F10, 65N30, 65N50, 65N55

Key words: Finite elements, unstructured meshes, non-nested spaces, transfer operators, inter-

polation, projection.

1. Introduction

The question of how to interpolate functions in finite element spaces is as old as the

finite element method itself. Approximation operators which map a given function to

a finite element space appear frequently in numerical analysis for a variety of reasons.

For both a priori and a posteriori discretization error estimates, one often needs to
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treat general elements of infinite dimensional function spaces. However, such operators

are usually not evaluated computationally but merely used in the analysis. A famous

example is the early work by Clément [26] on finite element quasi-interpolation of

discontinuous (non-smooth) functions.

In this paper, we study different operators mapping to finite element spaces. Al-

though a couple of the reviewed properties hold true in case the input function is in an

infinite dimensional function space, our main focus is the information transfer between

two finite element spaces. We investigate this by a series of numerical studies. The re-

spective spaces are Lagrange conforming finite elements of first order associated with

(either two or a whole hierarchy of) non-nested meshes. This non-nested information

transfer is important, for instance, in non-conforming domain decomposition meth-

ods [8,9,41,62,63] or in domain decomposition or multigrid methods with non-nested

coarse spaces [11, 15, 18, 20, 24, 30, 47, 48, 65] for the solution of partial differential

equations. It appears both in the analysis and in practical computations.

We present computational results on the behavior of local approximations of the L2-

projection between non-nested finite element spaces. Our numerical studies are based

on a detailed overview of different transfer operators. Let us emphasize that there is

neither a conclusive characterization of the information transfer between finite element

spaces associated with non-nested meshes nor a comprehensive classification of trans-

fer operators in this setting yet. In the present investigations, we show that, apart from

basic similarities, there are substantial conceptual and qualitative differences as well as

substantial quantitative differences between the studied operators.

Our research is in part motivated by the fundamental work on quasi-interpola-

tion [26, 54]. We also learned about advanced techniques for the construction of

transfer operators from [41, 62, 63] in the context of non-conforming domain decom-

position methods. Other interesting studies giving basic insights into the analysis of

approximation operators in finite element spaces, which influenced our work, can be

found in [4,12,13,20,24,56–58,64].

The evaluation criteria that are discussed in the theoretical part are the H1-stability,

an L2-approximation property, the locality of the information transfer, and the projec-

tion properties. In the computational part, we study the mutual relations between

the diverse transfer operators by numerical experiments. The operators are evaluated

for four examples of computational domains (ball, cylinder, half torus and Stanford

Bunny), each time for a series of independently generated meshes. All distances with

respect to certain operator norms are computed by solving the corresponding gener-

alized eigenvalue problems. To our knowledge, similar studies estimating distances

between transfer operators in the present context cannot be found elsewhere.

Let us briefly comment on an application for the non-nested information transfer

studied in this paper to multilevel preconditioners, which are among the most effi-

cient algorithms for the solution of discretized partial differential equations in many

applications; see, e.g., [5, 14, 17, 39, 40, 46, 50, 59, 66] for some of the most influential

achievements. For applications in computational engineering involving complicated

geometries in three dimensions, the construction of coarse spaces is often demanding
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and a flexible choice requires suitable transfer operators. In case of elliptic problems

discretized with first order elements on unstructured meshes, it is known from the liter-

ature on domain decomposition methods [20, 24, 30, 58, 65] that coarse spaces associ-

ated with non-nested meshes can be applied successfully to construct efficient precon-

ditioners. This holds true both for two-level overlapping Schwarz methods with global

coarse space and for multigrid methods. These classes of methods can be constructed

either in a variational or in a non-variational setting. The first one is characterized by

a recursive Galerkin relation whereas the second one works with virtually independent

coarse level problems. In any case, transfer operators between finite element spaces

associated with non-nested meshes are necessary ingredients.

Outline This paper is organized as follows. In the remainder of Section 1, we in-

troduce useful notations concerning the information transfer in finite element spaces

and comment on characteristic properties of transfer operators. Section 2 is the first

main part where different transfer operators are investigated comprehensively. Here,

we also comment on a uniform H1-stability estimate for the one-dimensional nodal

interpolation. In a second main part, Section 3, we present the quantitative studies of

the diverse transfer operators and their mutual relations for three geometric shapes in

3D. Section 4, is devoted to numerical studies for a more complex geometry (Stanford

Bunny).

1.1. Operators between finite element spaces associated with non-nested
meshes

We recall several standard notations from functional analysis; see, e.g., [1,35]. The

Lebesgue integral is denoted by
∫
· dx. For a Lipschitz domain Ω ⊂ R

d, let L2(Ω) be

the Hilbert space of square integrable functions in Ω with inner product (v,w)L2(Ω) :=∫
Ω vw dx and norm ‖ · ‖L2(Ω) := (·, ·)1/2

L2(Ω)
. The symbol L∞(Ω) represents the space

of essentially bounded functions with norm ‖v‖L∞(Ω) := ess sup
x∈Ω|v(x)|. By Hm(Ω),

as customary, we denote the Sobolev space of functions with m ≥ 1 square integrable

weak derivatives in Ω. Let α ∈ N
d be a multi-index of order |α| := ∑

1≤i≤d αi. Then,

∂α denotes the weak differentiation and the corresponding norm and semi-norm in

Hm(Ω) are

‖v‖Hm(Ω) :=

(∑
|α|≤m

‖∂αv‖2L2(Ω)

)1/2

and |v|Hm(Ω) :=

(∑
|α|=m

‖∂αv‖2L2(Ω)

)1/2

.

Moreover, the subspace of H1(Ω) with vanishing image of the usual trace opera-

tor to the boundary ∂Ω is called H1
0 (Ω); we have H1

0 (Ω) = {v ∈ H1(Ω) | v|∂Ω =
0 in H1/2(∂Ω)} = {v ∈ H1(Ω) | v = 0 a.e. on ∂Ω}.

Let (Tℓ)ℓ∈N be a family of non-nested shape regular meshes (i.e., of non-overlapping

decompositions into finitely many open polytopes) of Lipschitz domains (Ωℓ ⊂ R
d)ℓ∈N

of dimension d ∈ {2, 3}, i.e., there is a constant c such that sup ℓ∈N max T∈TℓhT /rT ≤ c.
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Here, for an element T ∈ Tℓ, let hT := diam(T ) be the diameter of T and rT the radius

of the largest ball inscribed in T . For simplicity, assume Ωℓ ⊂ Ωℓ−1 for ℓ > 0. We say

(Tℓ)ℓ∈N is quasi-uniform if, in addition, there is another constant c, independent of ℓ,
such that max T∈TℓhT ≤ c min T∈TℓhT for all ℓ ∈ N. As usual, local mesh size functions

hℓ ∈ L∞
> (Ωℓ) := {v ∈ L∞(Ωℓ) | ∃ α > 0, such that v(x) > α for a.e. x ∈ Ωℓ} are

introduced for instance defined a.e. by hℓ(x) := hT if x ∈ T . Assume the sequence

(hℓ)ℓ∈N is decreasing where well-defined.

We denote the set of nodes of Tℓ by Nℓ and abbreviate nℓ := |Nℓ|. At each level ℓ, we

consider the space Xℓ of Lagrange conforming finite elements of first order and denote

its nodal basis as Λℓ = (λℓp)p∈Nℓ
with λℓp(q) = δpq, p, q ∈ Nℓ. Let ωp := supp(λℓp) be

the support of the basis function at node p ∈ Nℓ commonly called patch. We occasion-

ally use coordinate isomorphisms of the form Φℓ : Rnℓ → Xℓ, Φℓ(v) :=
∑

p∈Nℓ
vpλ

ℓ
p.

See [25].

This paper is devoted to the numerics of the information transfer between non-

nested finite element spaces. A generic or unspecific transfer operator is denoted by Π.

To every concrete operator we will assign a different calligraphic symbol (I, P, Q, R),

sometimes varied by a tilde. If an operator maps between the two (non-nested) spaces

Xℓ−1 and Xℓ, this will be indicated by, e.g., Πℓ
ℓ−1. Similarly, an operator mapping some

other space, such as a Lebesgue or Sobolev space, to the finite element space Xℓ will be

denoted by, e.g., Πℓ. This shall suggest that a mesh Tℓ with a local mesh size function

hℓ ∈ L∞
> (Ωℓ) is always involved. A matrix Π

ℓ
ℓ−1 ∈ R

nℓ×nℓ−1 represents an operator

Πℓ
ℓ−1 with respect to the chosen bases if Πℓ

ℓ−1v = Φℓ(Π
ℓ
ℓ−1Φ

−1
ℓ−1(v)) for all v ∈ Xℓ−1.

1.2. On the properties of transfer operators

In this section, we briefly review characteristic properties of transfer operators

which are studied in this paper. Naturally, one does not only examine single enti-

ties but rather considers entire types or families of transfer operators. For example,

the terms “linear interpolation” or “orthogonal projection” specify different instruc-

tions each providing an operator Π : X → Y depending on certain data, namely the

domains ΩY ⊂ ΩX ⊂ R
d and the spaces X ⊂ H1(ΩX) and Y ⊂ H1(ΩY ). In this paper,

the target space Y is always a finite element space.

Definition 1.1. Let ΩY ⊂ ΩX ⊂ R
d be domains. Given a subspace X ⊂ H1(ΩX) and a

(target) finite element space Y ⊂ H1(ΩY ) with discretization parameter hY ∈ L∞
> (ΩY ),

an operator Π : X → Y is called H1-stable in X if

|Πv|H1(ΩY ) . |v|H1(ΩX ), ∀ v ∈ X. (1.1)

We say that the operator Π satisfies the L2-approximation property if

‖h−1
Y (v −Πv)‖L2(ΩY ) . |v|H1(ΩX), ∀ v ∈ X. (1.2)

Here and in the following, we write a . b if there is a constant c, which is indepen-

dent of the meshes, particularly of hY in (1.1) and (1.2), and the considered functions,
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such that a ≤ cb. Note that no relation between X and Y has been specified other

than the fact that functions from X are also well-defined in the domain ΩY . Defini-

tion 1.1 constitutes a quite general but common concept; the notions are used for both

coarse-to-fine and fine-to-coarse operators. The term H1-stability is slightly stronger

than H1-continuity, especially in the finite-dimensional case where every linear oper-

ator is continuous (with respect to every equivalent norm), because the latter notion

includes mappings with a continuity constant dependent on the mesh.

A direct consequence of the L2-approximation property (1.2) is that ‖v −
Πv‖L2(ΩY ) → 0 for ‖hY ‖L∞(ΩY ) → 0, which holds for all v ∈ X. This observation,

which has already been considered by Clément in his work [26] on finite element

interpolation of non-smooth functions, further illustrates the nature of the operators

addressed in this paper: An approximation operator mapping to a finite element space

converges (with respect to the L2-norm) to the natural embedding for increasing di-

mension of the target space.

Definition 1.2. Let Y be a finite element space associated with a mesh of a domain ΩY

with nodes NY , nY := |NY |, and coordinate isomorphism ΦY : RnY → Y . An operator

ΠY : H1(ΩY ) → Y is called local if

(
Φ−1
Y (ΠY v)

)
p
=

(
Φ−1
Y (ΠY w)

)
p
, ∀ p ∈ NY , ∀ v, w ∈ H1(ΩY ), v|ωp = w|ωp .

In this paper, we discuss both non-local (global) and local operators in the sense of

Definition 1.2. Note that, indeed, the patch ωp is generally the most reasonable “do-

main of influence” of the value at node p for the construction of a local approximation

operator.

Finally, consider the case that an operator Πℓ : H1(Ωℓ) → Xℓ acts as the identity

mapping on the target space. This is true if, for instance, Πℓ is a surjective projec-

tion. Then, if the meshes Tℓ−1 and Tℓ are nested, the fact that the corresponding

spaces Xℓ−1 ⊂ Xℓ are also nested implies immediately that the restricted mapping

Πℓ
ℓ−1 : Xℓ−1 → Xℓ is the natural embedding. This is a desirable property because one

might argue that otherwise (if there exists an element v ∈ Xℓ−1 such that ΠℓΠℓv 6= Πℓv)

a considerable part of structure (namely the appreciable fact that Xℓ−1 ⊂ Xℓ) is unnec-

essarily disregarded.

2. Operators between finite element spaces associated with non-nested
meshes

In this section, we present various transfer operators and review their fundamental

properties. Both intuitive and more elaborate mappings are examined to understand

the information transfer between finite element spaces associated with non-nested

meshes. We discuss locally and globally defined operators including well-known quasi-

interpolation concepts and also focus on their algorithmic structure. Each transfer op-

erator is at least “geometrically inspired”, namely the algorithm to compute a concrete
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realization incorporates geometric information in terms of finite element meshes. All

operators presented here are studied experimentally in Section 3 and Section 4.

2.1. Standard finite element interpolation

First, we consider the most elementary operator. The standard finite element in-

terpolation or nodal interpolation in case of first order Lagrange elements is defined

by

Iℓ : C0(Ω) → Xℓ, u 7→ Iℓu :=
∑

p∈Nℓ

u(p)λℓp.

Here and in the following, assume that the generic domain Ω is sufficiently large.

The operator is surjective, namely Iℓ(C0(Ω)) = Xℓ, and a projection, i.e., for every

v ∈ C0(Ω) we have IℓIℓv = Iℓv. The interpolation in Xℓ with the domain restricted

to the finite element space Xℓ−1 is called Iℓ
ℓ−1. Evidently, the operator is local accord-

ing to Definition 1.2. Moreover, when restricted to finite element spaces, it possesses

the H1-stability and L2-approximation properties given in Definition 1.1 for shape reg-

ular meshes. This result can be found in several papers; see, e.g., [20, 24, 58]. For

counterexamples for general H1-functions and d = 2, see [3].

From a computational point of view, the standard nodal interpolation is very at-

tractive. Given an arbitrary function in C0(Ω), the computation of the interpolant is

very cheap with one function evaluation per node in Nℓ, i.e., per basis function in Λℓ.

It is without any doubt the least expensive way to transfer information to a finite el-

ement space in a reasonable way. For the computation of the matrix representation

in R
nℓ×nℓ−1, this amounts to the evaluation of λℓ−1

q (p) for all q ∈ Nℓ−1 and p ∈ Nℓ.

Naturally, one may neglect the combinations with p 6∈ ωq. This is straightforward if

successive meshes are nested and parent-child relations are known. In the non-nested

setting, such neighborhood relations have to be computed; see Section 2.6.

On the H
1-stability of the nodal interpolation

In the literature, several different proofs have been brought forth for the stability and

approximation property of the nodal interpolation in case the domain is restricted to a

(coarser) finite element space; see [20, 24, 58]. The stability estimates usually depend

on the shape regularity of the meshes which, in general, leads to constants greater than

one. However, we found an elementary proof in case d = 1, where no shape regularity

assumption needs to be considered, for the fact that “interpolation smoothes”. The

following lemma states for the one-dimensional setting that the linear interpolation

operator Iℓ
ℓ−1 : Xℓ−1 → Xℓ has an H1-stability constant less than or equal to one

whether or not Dirichlet conditions come into play. The uniform estimates hold without

any assumptions on the mesh sizes or on the relations between the meshes.

Lemma 2.1. Let d = 1. Then, the nodal interpolation operator Iℓ
ℓ−1 : Xℓ−1 → Xℓ satisfies

the following uniform H1-stability estimates:

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S100489790000012X
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 21:52:37, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S100489790000012X
https:/www.cambridge.org/core


294 T. Dickopf and R. Krause

If Ωℓ ⊂ Ωℓ−1,

|Iℓ
ℓ−1v|H1(Ωℓ) ≤ |v|H1(Ωℓ) ≤ |v|H1(Ωℓ−1), ∀ v ∈ Xℓ−1,

otherwise,

|Iℓ
ℓ−1E v|H1(Ωℓ) ≤ |v|H1(Ωℓ∩Ωℓ−1), ∀ v ∈ Xℓ−1, v|∂Ωℓ−1

= 0,

where E : H1
0 (Ωℓ−1) → H1(Ωℓ−1 ∪ Ωℓ) is the natural extension by zero. Moreover, the

interpolation operator Iℓ,0
ℓ−1 : Xℓ−1 → Xℓ ∩H1

0 (Ωℓ) enforcing zero function values at ∂Ωℓ

satisfies

|Iℓ,0
ℓ−1E v|H1(Ωℓ) ≤ |v|H1(Ωℓ∩Ωℓ−1), ∀ v ∈ Xℓ−1, v|∂Ωℓ−1

= 0, v|∂Ωℓ∩Ωℓ−1
= 0.

We emphasize that the symbols ⊂ and ⊃ always include the case of equality. The

proof and more details are elaborated in [31]. There, we also give counterexamples

for the nodal interpolation in higher order finite element spaces. For stability and

approximation properties with respect to the L∞-norm, see, e.g., [19].

2.2. Clément-type quasi-interpolation

The following class of approximation operators has originally been introduced

in [26] to generalize the nodal interpolation in finite element spaces if the consid-

ered functions are discontinuous. Quasi-interpolation is probably most famous for its

frequent usage in proofs of the reliability of a posteriori error estimators; see [23, 60]

for a detailed review.

The Clément operator is defined by

Rℓ : L
2(Ω) → Xℓ, u 7→ Rℓu :=

∑
p∈Nℓ

(Qpu)(p)λ
ℓ
p, (2.1)

with the L2-projections Qp onto the local polynomial spaces Pr(ωp) of degree r ∈ N,

i.e.,

u 7→ Qpu ∈ Pr(ωp) : (Qpu, v)L2(ωp) = (u, v)L2(ωp), ∀ v ∈ Pr(ωp), p ∈ Nℓ. (2.2)

For instance, each projection Qp simply acts as local averaging by Qpu = 1
|ωp|

∫
ωp
u dx

if r = 0. By construction, the generated operators are local according to Definition 1.2.

Lemma 2.2 ([4, 12, 26]). The Cĺement operator Rℓ is H1-stable and has the L2-

approximation property for r ∈ N.

Whereas the original results in [26] have been derived for triangular meshes in case

d = 2, the relevant properties can indeed be proved for finite element spaces associated

with general, not necessarily affine meshes and d ∈ {2, 3}. Note that the assertion holds

true for non-quasi-uniform meshes; we refer the reader to the discussion in [4]. The
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technical ideas of the proof are perhaps most clearly elaborated in [12, Lemma 3.1],

although in a slightly different context.

By definition, the Clément interpolation acts as the nodal interpolation on polyno-

mials of degree r, namely Rℓv = Iℓv for all v ∈ Pr(Ω). For the purpose of information

transfer between finite element spaces, regardless of whether nested or non-nested,

which are built from piecewise polynomials, this cannot be exploited, though.

Restricting the attention to the discrete space Xℓ, one notes that the Clément inter-

polation Rℓ : Xℓ → Xℓ does not keep invariant the basis functions; see (2.3) below.

But this information is not sufficient to determine the projection properties of the op-

erator in the spaces L2(Ω) and Xℓ−1, respectively. This is because, in general, one

does not know whether the functions λℓp ∈ Λℓ are contained in the range Rℓ(L
2(Ω)) or

even Rℓ(Xℓ−1). However, considering the size of the supports of the images of certain

functions, we can prove the following

Proposition 2.1. Let the mesh Tℓ contain at least two interior nodes. Then, the quasi-

interpolation Rℓ : L
2(Ω) → Xℓ is not a projection.

Proof. Let v ∈ L2(Ω) be a non-negative, non-trivial function such that supp(Rℓv) 6=
Ω. It is easy to see that such a “local” function v exists if the mesh Tℓ has at least

two interior nodes. Then, one can find an element T0 ∈ Tℓ with T0 6⊂ supp(Rℓv) but

T 0 ∩ supp(Rℓv) 6= ∅, in other words an element adjacent to the support of Rℓv. It is

obvious that

supp(Rℓλ
ℓ
p) =

⋃{
T | T ∈ Tℓ, T ∩ ωp 6= ∅

}
, ∀ p ∈ Nℓ. (2.3)

By definition, we have the linear combination RℓRℓv =
∑

p∈Nℓ
(Qpv)(p)Rℓλ

ℓ
p with

numbers (Qpv)(p) ≥ 0. Because the functions Rℓλ
ℓ
p =

∑
r∈Nℓ

(Qrλ
ℓ
p)(r)λ

ℓ
r, p ∈ Nℓ, are

also non-negative, the contributions coming from Rℓλ
ℓ
p and Rℓλ

ℓ
q, p 6= q, do not cancel

out each other in the calculation of the effective coefficients of RℓRℓv with respect to

the basis Λℓ. Thus, it follows that T0 ⊂ supp(RℓRℓv) and, consequently, RℓRℓv 6= Rℓv.

This concludes the proof of the proposition.

There are in fact subspaces U ⊂ L2(Ω) such that RℓRℓu = Rℓu for all u ∈ U ; for

instance, Pr(Ω) has this property, as mentioned before. We now investigate to what

extent the above considerations also hold true for Rℓ
ℓ−1 : Xℓ−1 → Xℓ, namely if the

domain of the operator is restricted to the discrete subspace Xℓ−1. For this purpose,

suppose that there is a node p ∈ Nℓ−1 and an element T1 ∈ Tℓ such that

int
(⋃

{T | T ∈ Tℓ, T ∩ supp(λℓ−1
p ) 6= ∅}

)
∩ int

(⋃
{T | T ∈ Tℓ, T ∩ T 1 6= ∅}

)
= ∅.
(2.4)

Simply put, T1 needs to be sufficiently far away from the “reach of p”. This implies that

int(supp(Rℓλ
ℓ−1
p )) ∩ T1 = ∅. Thus, supp(Rℓλ

ℓ−1
p ) 6= Ω and one can find an element

T0 ∈ Tℓ which is adjacent to the support of Rℓλ
ℓ−1
p . Concluding as before, we have the

following:
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Proposition 2.2. Provided that (2.4) can be fulfilled, the Cĺement interpolation is not a

projection even if its domain is restricted to the discrete subspace Xℓ−1.

Note that the relatively weak assumption (2.4) is valid for virtually every pair of

meshes (Tℓ−1,Tℓ) one might handle. Therefore, we have shown that the Clément inter-

polation operator is practically never a projection.

From Proposition 2.2 we observe the following: Neither does the Clément opera-

tor reduce to the standard interpolation in case of nested meshes Tℓ−1 and Tℓ nor is

it the identity mapping if the meshes and hence the associated spaces are identical.

Evidently, this observation is valid for any polynomial degree r ∈ N. In addition, this

deficiency cannot be overcome by changing the local domains (ωp)p∈Nℓ
in (2.2) by

introducing another type of (overlapping or non-overlapping) decomposition of local

neighborhoods. One could, however, turn the quasi-interpolation into a projection by

choosing a suitable restriction of the original finite element space as local space.

2.3. The L
2-projection

In this section, we comment on the use of an operator which appears naturally

in the present context. Let Qℓ : L2(Ω) → Xℓ be the L2-projection onto Xℓ, i.e., the

orthogonal projection in the Hilbert space L2(Ω) to the subspace Xℓ characterized by

the variational equation

u 7→ Qℓu ∈ Xℓ : (Qℓu, v)L2(Ω) = (u, v)L2(Ω), ∀ v ∈ Xℓ.

The mapping Qℓ is global as opposed to Definition 1.2. This can be understood consid-

ering the algebraic representation of the fully discrete operator Qℓ
ℓ−1 via a product

Qℓ
ℓ−1v = Φℓ(M

−1
ℓ BℓΦ

−1
ℓ−1(v)), ∀ v ∈ Xℓ−1, (2.5)

with the mass matrix M ℓ ∈ R
nℓ×nℓ with respect to Λℓ, i.e., (M ℓ)pq = (λℓp, λ

ℓ
q)L2(Ω) for

p, q ∈ Nℓ, and a sparse coupling matrix Bℓ ∈ R
nℓ×nℓ−1 with the entries

(Bℓ)pq = (λℓp, λ
ℓ−1
q )L2(Ω), ∀ p ∈ Nℓ, q ∈ Nℓ−1. (2.6)

Therefore, the L2-projection “as is” cannot be expected to yield a computationally ef-

ficient information transfer unless the evaluation of M−1
ℓ can be avoided. Note that

the operator attained by simply lumping the matrix M ℓ is considered in Section 2.4.

We emphasize that some of the (to a greater or lesser extent sophisticated) operators

discussed in the literature and in this paper are distinctly motivated by the idea to find

an L2-projection-like mapping or a weighted interpolation which is more suitable for

computations.

To obtain a stability estimate for the L2-projection, the requirement of quasi-

uniformity of the mesh Tℓ has been considered inevitable for quite a long time.

Meanwhile, weaker criteria ensuring the H1-stability of Qℓ are available; see, e.g.

[12, 22, 28, 56]. For estimates with respect to other Lebesgue norms, see [34] and the
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references therein. Two different proofs both using inverse estimates of Bernstein-type,

which generally hold true only for quasi-uniform meshes, can be found in [16, Theo-

rem 3.4] and [10, Folgerung II.7.8]. The L2-approximation property in case of quasi-

uniform meshes can be proved with elementary techniques employing another suitable

approximation operator such as the Clément quasi-interpolation. In contrast, for a di-

rect proof, see, e.g., [16, Theorem 3.2]. The latter employs the fact that Qℓ yields the

best approximation in Xℓ with respect to the norm ‖ · ‖L2(Ω). Further ingredients are

a standard finite element interpolation error estimate and an interpolation technique

between Sobolev spaces.

2.4. On L
2-quasi-projections

In this section, we consider a concept from the literature yielding local approxima-

tion operators. The following quasi-projection operator has been employed in [13] to

approximate the L2-projection from the space H1(Ω) to the discrete spaces Xℓ. It is a

mapping directly defined via the formula

Q̃ℓ : L
2(Ω) → Xℓ, u 7→ Q̃ℓu :=

∑
p∈Nℓ

(λℓp, u)L2(Ω)

(λℓp,1)L2(Ω)
λℓp, (2.7)

where 1 denotes the constant function with value 1; see also [21]. After all, we can

obtain a matrix representation of the fully discrete operator Q̃ℓ
ℓ−1 : Xℓ−1 → Xℓ from

the one of the standard L2-projection in a simple way by lumping the mass matrix M ℓ

in (2.5). In the numerical practice, this seems a very natural thing to do. Moreover,

for simplicial meshes, it is easy to verify by integration over the reference element that

(λℓp,1)L2(Ω) = |ωp|/(d+ 1) for all p ∈ Nℓ; thus, the operator Q̃ℓ may equivalently be

defined by the variational equation

u 7→ Q̃ℓu : (Q̃ℓu, v)ℓ = (u, v)L2(Ω), ∀ v ∈ Xℓ, (2.8)

with a specific discrete inner product (·, ·)ℓ in Xℓ, namely

(u, v)ℓ :=
1

d+ 1

∑
T∈Tℓ

|T |
∑

p∈Nℓ∩T
u(p)v(p), ∀ u, v ∈ Xℓ, (2.9)

as proposed, e.g., in [64]. In other words, Q̃ℓ is the orthogonal projection to the space

Xℓ equipped with (·, ·)ℓ. Another discrete inner product also motivated by a quadrature

rule (on centroids of faces instead of nodes) can be found in [11]. There, it is used in

the fashion of (2.8) to define a prolongation operator between the non-nested spaces

associated with a discretization with Crouzeix-Raviart elements on nested meshes.

Note that Q̃ℓ is usually not a projection; this motivates the term quasi-projection. A

proof of this assertion can be achieved analogously to the ones of Proposition 2.1 and

Proposition 2.2, which treat the same issue for the Clément interpolation. In addition,

one can easily see that for p ∈ Nℓ we have (λℓp, λ
ℓ
p)L2(Ω) < (λℓp,1)L2(Ω); thus, Q̃ℓλ

ℓ
p 6= λℓp.
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One needs to notice that there is virtually no experience with quasi-projections in

practical computations. However, proofs of the H1-stability and the L2-approxima-

tion property of the operators Q̃ℓ for shape regular families of meshes are derived by

well-known arguments as described at the end of Section 2.5.

Finally, we notice that Q̃ℓ is self-adjoint with respect to the L2-inner product, i.e.,

(Q̃ℓu, v)L2(Ω) =
∑

p∈Nℓ

(λℓp, u)L2(Ω)(λ
ℓ
p, v)L2(Ω)

(λℓp,1)L2(Ω)
= (u, Q̃ℓv)L2(Ω), ∀ u, v ∈ L2(Ω).

However, we do not know whether this property may be put to a good use in the

analysis or the practical computations at this point. This is because the two involved

spaces are usually not identical in applications. Note that the only operator that is

self-adjoint and at the same time a projection is the orthogonal projection Qℓ.

2.5. The pseudo-L2-projection

In this section, a transfer operator is considered which is different in some respects.

It will be denoted by the symbol P with the appropriate indices. Generally speaking,

we introduce a Petrov-Galerkin scheme with a discontinuous test space built from a

set of functions which are biorthogonal to the standard nodal basis with respect to the

L2-inner product (·, ·)L2(Ω). By this means, the global variational formulation defines

local mappings, which is similar to (2.8). In the fully discrete setting, this yields a band

matrix representation of the operator as no mass matrix has to be inverted.

The mapping Pℓ is in fact a projection from L2(Ω) onto the finite element space

Xℓ. Additionally, in the authors’ view, the operator represents a way to get “as close

as possible” to the real L2-projection while at the same time it guarantees an efficient

evaluation. This is clearly confirmed by the numerical experiments in Section 3 and

Section 4. Therefore, we suggest to call this oblique projection operator “pseudo-L2-

projection” in this context. This term is also meant to contrast, e.g., the L2-quasi-

projection concepts of Section 2.4, which yield in actual fact no projections. Moreover,

the pseudo-L2-projection seems to be the only, reasonably straightforward operator in

the fashion of the previous ones (2.7) and (2.8) which is actually a projection.

For the definition of the operator, choose a set of functions Ψℓ = (ψℓ
p)p∈Nℓ

with

ψℓ
p|ωp ∈ C0(ωp) for all p ∈ Nℓ, extended to Ω by zero, such that

(ψℓ
p, λ

ℓ
q)L2(Ω) = δpq(λ

ℓ
p,1)L2(Ω), ∀ p, q ∈ Nℓ, (2.10)

and set the discontinuous test space as Yℓ := span{ψℓ
p | p ∈ Nℓ} 6⊂ C0(Ω). Note that such

a dual basis with respect to (·, ·)L2(Ω) of the nodal finite element basis Λℓ = (λℓp)p∈Nℓ

exists. This can also be seen, for example, in the various procedures in [37, 49] for

an explicit construction of the set Ψℓ. In particular, on its support ωp, each ψℓ
p can be

represented by a linear combination of the nodal basis functions associated with the

adjacent elements restricted to ωp. In case of affine elements, the coefficients do not

depend on the actual node p and element T but can be computed on the reference
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element in a one-time process; no inverse element mass matrices are necessary. This

is due to the scaling with (λℓp,1)L2(Ω) on the right hand side of (2.10) which also

implies the boundedness ‖ψℓ
p‖L∞(Ω) . 1 for all p ∈ Nℓ. For a more detailed analysis of

biorthogonal bases, carried out in the context of the mortar finite element method [9],

and the construction of such systems for higher order finite element spaces, we refer

to [41,43,44,63].

Now, we define the pseudo-L2-projection Pℓ : L2(Ω) → Xℓ by a global Petrov-

Galerkin variational formulation with trial space Xℓ and test space Yℓ, i.e.,

u 7→ Pℓu : (Pℓu, v)L2(Ω) = (u, v)L2(Ω), ∀ v ∈ Yℓ. (2.11)

This variational problem has a unique solution because dim(Yℓ) = dim(Xℓ) < ∞ and

for u ∈ Xℓ it is (u, v)L2(Ω) = 0 for all v ∈ Yℓ if and only if u = 0. In particular, the

definition yields the obvious representation formula

Pℓu =
∑

p∈Nℓ

(ψℓ
p, u)L2(Ω)

(λℓp,1)L2(Ω)
λℓp, ∀ u ∈ L2(Ω). (2.12)

The operator Pℓ is well-defined by Hölder’s inequality. The fully discrete representation

in R
nℓ×nℓ−1 of the pseudo-L2-projection Pℓ

ℓ−1 : Xℓ−1 → Xℓ is obtained analogously to

the ones of the L2-projection and the L2-quasi-projection from the previous sections.

The idea to use a Petrov-Galerkin scheme to define a generalized projection operator

can be found in [56] for d ∈ {1, 2}, too. There, the test space is constructed differently;

the local test functions are associated with a dual mesh. Undoubtedly, the root of the

considered operators lies in the research of quasi-interpolation concepts by Clément

[26]. However, the first appearance of a weighted interpolation operator using a system

of biorthogonal test functions was in [54]. Biorthogonal systems of some form or

another are classic in linear algebra and considerably more common in the context of

wavelets; see, e.g., [27,29,61]. Generalized projections using dual test functions have

first been introduced to the area of domain decomposition methods by [62, 63] and

then [41]. In practical computations, operators of this type have been used to map

trace functions between non-matching interfaces; see also [32, 33] and the references

therein.

As opposed to the earlier version proposed in [54], we do not aspire to preserve

Dirichlet boundary conditions on ∂Ω. This is immediately reflected by the definition

as supp(ψℓ
p) = ωp also for boundary nodes. We do not have to choose suitable (d −

1)-dimensional sub-simplices on the boundary but rather work with the given finite

element meshes, which makes the definition, in a sense, more symmetric. A further

advantage, which we do not yet exploit here, is the lower requirement for the regularity

of the considered functions, namely L1(Ω) instead of Wm
p (Ω) with m ≥ 1 if p = 1 and

m > 1/p otherwise; see also [21].

Let us now examine the properties of the operator more closely. First of all, the

mapping Pℓ is surjective, namely Pℓ(L
2(Ω)) = Xℓ, because (2.10) and (2.12) imme-

diately imply Pℓλ
ℓ
p = λℓp for all p ∈ Nℓ. Moreover, it is a projection onto Xℓ. This is
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a simple consequence of the linearity of the operator and, again, the biorthogonality

property (2.10). In addition, it is important to note the following:

Lemma 2.3. The pseudo-L2-projection Pℓ is H1-stable and has the L2-approximation

property for all shape regular families of meshes.

The assertion may proved by well-known arguments as Poincaré’s inequality and

the fact that constant functions are reproduced locally; see [30, Section 5.5]. It indeed

holds true for shape regular (not necessarily quasi-uniform) meshes with a mesh size

function hℓ ∈ L∞
> (Ω) because all estimates are local; in an element T ∈ Tℓ they only in-

volve the values in a small neighborhood. Similar arguments yield the H1-stability and

the L2-approximation property of the L2-quasi-projection Q̃ℓ described in Section 2.4

as it also reproduces the constant functions locally.

2.6. Implementation aspects

In this section, we focus on the realization of the specific transfer operators in prac-

tical finite element codes. All described methods are implemented in a module nnmglib

(developed in [30]) in the package obslib++, which is maintained by the second au-

thor and his work group. The software uses fundamental components of the finite

element toolbox ug; see [7].

For the computation of a matrix representation of a linear operator fromXℓ−1 toXℓ,

one needs to deal with quantities associated with different meshes without any usable

a priori relation. Therefore, we have incorporated the quadtree/octree implementation

of [2] into obslib++. Suitable advancing front techniques exploiting the connectivities

of the single meshes can be applied instead; see, e.g., [38] in a related context. In any

case, for each node p ∈ Nℓ, a set N p
ℓ−1 ⊂ Nℓ−1 containing a sufficiently small number

of nodes is determined such that

q ∈ Nℓ−1, int(ωq) ∩ int(ωp) 6= ∅ =⇒ q ∈ N p
ℓ−1.

Then, all terms which appear in the presented discrete operators may evidently be com-

puted only based on these local index subsets. This results in almost linear complexity

of the assembly procedure.

2.6.1. Numerical integration

For all transfer operators, with the exception of the nodal interpolation, L2-inner prod-

ucts of functions associated with different meshes need to be computed. This is obvi-

ous for the operators Qℓ
ℓ−1 and Q̃ℓ

ℓ−1 involving the sparse but global coupling matrix

Bℓ ∈ R
nℓ×nℓ−1 defined in (2.6). The analogon for the pseudo-L2-projection Pℓ

ℓ−1 re-

quires the entries

(ψℓ
p, λ

ℓ−1
q )L2(ωp∩ωq), ∀ p ∈ Nℓ, q ∈ Nℓ−1. (2.13)

We turn to the other mappings which employ local orthogonal projections below.

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S100489790000012X
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 21:52:37, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S100489790000012X
https:/www.cambridge.org/core


Evaluating Local Approximations of the L2-Orthogonal Projection 301

To evaluate (2.6) or (2.13) exactly, one has to compute the intersections of the

elements in the consecutive meshes. As we have previously done in [32] for the inter-

section of locally projected non-matching interface meshes, we employ the quickhull

algorithm in an implementation by [6] for this purpose. After a suitable remeshing of

the computed intersection polytopes, one achieves an exact integration, up to roundoff

errors, by the application of low order quadrature rules. We have implemented the

methods concerning element intersections in a module cutlib.

In practice, good results may be obtained by an approximate numerical integra-

tion via a quadrature rule solely based on the finer mesh. The order of the employed

quadrature rules should be adequate such that they are exact at least in case of nested

meshes. This requires order two for the above operators and order r+1 for the Clément

quasi-interpolations. We are aware of the fact that such an approach might fail to retain

optimal (discretization) error estimates, for instance, in the mortar finite element set-

ting; see [36, 45]. However, let us refer to the numerical studies in Section 3.3, where

we demonstrate that the error in the operator itself due to approximate integration is

small if the quadrature rule is chosen adequately.

2.6.2. Computation of orthogonal projections

The evaluation of the operator Qℓ
ℓ−1, which is the orthogonal projection to the space Xℓ

with respect to the L2-inner product, is very expensive. For the experiments in Section 3

and Section 4, we employ the direct sparse solver pardiso [52, 53] to decompose the

appearing mass matrices. This is more efficient than an iterative solver in this special

case as the respective inverse needs to be applied to a large number of vectors. The

pseudo-L2-projection Pℓ
ℓ−1 is also defined via a global variational formulation but can

be evaluated efficiently by construction. Note that the quasi-projection Q̃ℓ
ℓ−1 yields a

simple formulation, too. The same holds true for a quasi-interpolation operator in case

the local trial and test spaces are one-dimensional, e.g., for the Clément operator Rℓ
ℓ−1

with r = 0.

In contrast, we have seen that general transfer operators may require the evaluation

of local orthogonal projections. In the following, we sketch the implementation of the

operators Rℓ
ℓ−1 with r > 0. To solve the corresponding local variational equations (2.2)

for the right hand sides given by the coarse level basis functions, one needs to compute

coarse-to-fine coupling matrices and mass matrices similar to the ones in (2.5) but

associated with the local spaces. Let (φpi )1≤i≤np be a basis of the considered trial space

at p ∈ Nℓ. Then,

(Mp)ij = (φpi , φ
p
j )L2(ωp), ∀ 1 ≤ i, j ≤ np,

and

(Bp)iq = (φpi , λ
ℓ−1
q )L2(ωp), ∀ 1 ≤ i ≤ np, q ∈ Nℓ−1, (2.14)

are the respective local matrices. We omit the level index ℓ as it is clear from the

choice of p. For the Clément quasi-interpolation operators, the trial and test spaces

are obtained by restrictions of global polynomial spaces to the patches. Therefore, one
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may choose a universal basis for the implementation; for instance, (φi)1≤i≤d+1 with

φi(x) = x · ei for 1 ≤ i ≤ d and φd+1 ≡ 1 is a convenient choice in case r = 1. The

issues concerning the numerical integration of (2.14) are solved as before for the global

coupling matrices. As usual in finite element assembly algorithms, a single loop over

all elements in Tℓ makes sure that no redundant computations are carried out; each

integral contribution is only computed once. Finally, the entries of the global matrix

representations in R
nℓ×nℓ−1 of the Clément operators Rℓ

ℓ−1 : Xℓ−1 → Xℓ read as

∑np

i=1

∑np

j=1
(M−1

p )ij(Bp)jqφi(p), ∀ p ∈ Nℓ, q ∈ Nℓ−1.

This formula is immediately derived by solving the variational equation (2.2) for the

basis functions (λℓ−1
q )q∈Nℓ

and evaluating the result at the node p. The inversion of

the nℓ local mass matrices (M p)p∈Nℓ
is required with dimension np = dim(Pr(ωp)) =

(d+ r)!/(d! r!).

3. Numerical studies of the diverse transfer operators

Let us now focus on the practical properties of the described transfer operators. In

this section, we report on various numerical experiments which are performed to assess

interconnections between the single operators. Subjecting the discrete mappings to a

close examination, we want to understand better what the fundamental characteristics

of the information transfer between non-nested finite element spaces are.

The examples of computational domains studied here are three geometric shapes

(ball, cylinder, half torus) each with a series of independently generated meshes; see

Section 3.1. To investigate the behaviors of the mappings, we look at suitable operator

norms with respect to the L2-norm and the H1-semi-norm associated with the appro-

priate domains. The desired quantities are computed by solving generalized eigen-

value problems as described in Section 3.2. We obtain results on the accuracy of an

approximate numerical integration in Section 3.3. Finally, we examine the quantita-

tive differences of the transfer operators by measuring the distances between them in

Section 3.4.

The assessment performed here is motivated by the desire to become more familiar

with the application of (to a greater or lesser extent sophisticated) (quasi-)interpolation

and (quasi-)projection operators in practical computations. It allows for “drawing a

map” arranging the operators by their mutual relations. To our knowledge, the evalua-

tion of operators for the information transfer between finite element spaces associated

with non-nested meshes has never been studied in such a manner so far.

3.1. Setup of the experiments

For the experiments presented in this section, we consider a number of indepen-

dently generated meshes of a ball, a cylinder and a half torus, respectively. These are
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Figure 1: Examples for the unstructured meshes for the numerical studies: ball B, half torus H, cylinder C
(from left to right). The characteristics of the independently generated meshes are given in Table 1.

appropriate geometric settings as one can easily obtain completely independent un-

structured volume meshes for a large variety of different mesh sizes by standard tetra-

hedral mesh generation tools, e.g., from CUBIT [51]. In addition, they yield very good

reproducibility. Note that the setting is also sufficiently general. On the one hand, this

can be seen in an illustrative example in Remark 3.1 at the beginning of Section 3.4.

On the other hand, we study a more complex geometry in Section 4.

We use a set of tetrahedral meshes (Bi)1≤i≤9 of a ball, (Ci)1≤i≤9 of a cylinder and

(Hi)1≤i≤9 of a half torus, respectively, with their characteristics given in Table 1 ordered

by the number of elements. For each of the geometric shapes, one mesh is illustrated

in Fig. 1. Note that the situation between the single meshes is sufficiently general in

the sense that there are no mutual relations other than that they approximate the same

domain. In particular, none of the meshes stems from a refinement routine; they are

all imported separately.

Table 1: Characteristics of the independently generated meshes (Bi)1≤i≤9 of a ball, (Ci)1≤i≤9 of a cylinder
and (Hi)1≤i≤9 of a half torus. The meshes do not stem from a refinement routine; they cover a broad range
of sizes.

#elements #nodes #elements #nodes #elements #nodes

B1 292 88 C1 239 78 H1 649 191

B2 580 150 C2 751 196 H2 1,421 371

B3 1,708 392 C3 1,424 348 H3 1,964 500

B4 3,616 778 C4 4,407 947 H4 6,392 1,418

B5 10,711 2,168 C5 8,100 1,690 H5 12,329 2,613

B6 48,320 9,228 C6 16,591 3,313 H6 33,486 6,700

B7 64,773 12,294 C7 27,681 5,372 H7 56,959 11,126

B8 93,620 17,647 C8 50,195 9,570 H8 80,881 15,590

B9 123,946 23,259 C9 103,746 19,373 H9 111,439 21,235

For the three cases, we consider mappings between the different meshes and in-

troduce the notations, again, by using the generic operator symbol Π with i and j as

indices and exponents. For the purposes of the present section, we do not need to

distinguish between the different objects associated with the ball, the cylinder and the

half torus by marking the symbols for the domains, spaces and operators, respectively.

This is because the geometric shapes are treated one at a time. Consequently, let the
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corresponding domains be denoted by (Ωi)1≤i≤9; accordingly, (Xi)1≤i≤9 are the stan-

dard finite element spaces associated either with the meshes (Bi)1≤i≤9 or (Ci)1≤i≤9 or

(Hi)1≤i≤9 without any boundary modifications. Then, we denote the connecting oper-

ators, e.g., by Πj
i : Xi → Xj for 1 ≤ i < j ≤ 9.

3.2. Computation of operator norms

In the following, operator norms play a central role; for Πj
i , Π̃

j
i ∈ Lin(Xi,Xj), we

study terms of the form

sup v∈Xi∩H1

0
(Ωi), ‖v‖i 6=0

‖Πj
iv‖j

‖v‖i
or sup v∈Xi∩H1

0
(Ωi), ‖v‖i 6=0

‖Πj
iv − Π̃j

iv‖j
‖v‖i

, (3.1)

where ‖ · ‖i and ‖ · ‖j are suitably chosen (semi-)norms in Xi and Xj , respectively. All

mentioned transfer operators may be employed to map an infinite-dimensional function

space to a finite element space which is normally a subspace. However, we emphasize

that we do not consider a general Hilbert space setting but restrict the attention to

the case of two finite element spaces which is relevant for the outlined applications.

Therefore, the suprema in (3.1) are taken over finite element functions in Xi only.

Finally, we require the test functions to be in H1
0 (Ωi) such that their extensions by zero

to the possibly larger domain Ωj are continuous and piecewise first order polynomials

and, thus, weakly differentiable.

To compute quantities of the form (3.1) with respect to the L2-norm and the H1-

semi-norm, respectively, the corresponding generalized eigenvalue problems are con-

sidered. For this purpose, we abbreviate N 0
ℓ := {p ∈ Nℓ | p 6∈ ∂Ωℓ} and n0ℓ := |N 0

ℓ |.
Let the matrix Aℓ ∈ R

nℓ×nℓ be the representation of the H1-semi-norm with respect

to Λℓ, i.e., (Aℓ)pq =
∫
Ωℓ

∇λℓp · ∇λℓq dx for p, q ∈ Nℓ, and similarly A
0
ℓ ∈ R

n0

ℓ
×n0

ℓ with

entries (A0
ℓ)pq =

∫
Ωℓ

∇λℓp · ∇λℓq dx for p, q ∈ N 0
ℓ . Naturally, A

0
ℓ is symmetric posi-

tive definite. We also introduce the mass matrix in the interior M
0
ℓ ∈ R

n0

ℓ
×n0

ℓ with

(M0
ℓ )pq = (λℓp, λ

ℓ
q)L2(Ωℓ) for p, q ∈ N 0

ℓ . Finally, let Π
j
i ∈ R

nj×n0

i be the matrix represen-

tation of an operator Πj
i : Xi ∩H1

0 (Ωi) → Xj with respect to the chosen bases. Then,

we have the operator norms

‖Πj
i‖L2 = max

{√
η ∈ R | ∃ v ∈ R

n0

i such that (Πj
i )

T
M jΠ

j
iv = ηM 0

iv

}
(3.2)

and

|Πj
i |H1 = max

{√
η ∈ R | ∃ v ∈ R

n0

i such that (Πj
i )

T
AjΠ

j
iv = ηA0

iv

}
. (3.3)

For brevity, in the notations of the operator norms, we omit the two different spaces

with the two different domains. Distances between operators may be measured like-

wise by, e.g., ‖Πj
i − Π̃j

i‖L2 for some Πj
i , Π̃

j
i ∈ Lin(Xi,Xj). We also consider relative
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quantities, namely terms of the form |Πj
i − Π̃j

i |H1/|Πj
i |H1 . Note that a sampling proce-

dure that we used previously to estimate operator norms yielded essentially the same

results.

The generalized eigenvalue problems in (3.2) and (3.3) are solved iteratively by

the locally optimal block preconditioned conjugate gradient method (LOBPCG) [42]

for the largest eigenvalues. We proceed as outlined in Section 2.6 to obtain numerical

representations of the transfer operators. Then, to compute the desired quantities by

solving (3.2) and (3.3), respectively, one step of the LOBPCG method requires several

matrix-vector multiplications involving mass or stiffness matrices both in R
nj×nj and

in R
n0

i×n0

i as well as prolongation matrices in R
nj×n0

i and their transposes. To evaluate

the L2-projection, additional forward-backward substitutions are necessary.

3.3. Influence of numerical integration

In this section, we consider the inexact integration of the coupling terms between

the basis functions of Xi and Xj by means of a quadrature rule solely associated with

the target mesh, as described in Section 2.6. We verify that this approximation is

very accurate in case of sufficiently many function evaluations per element. (Note that

inner products of finite element functions associated with the same mesh are always

evaluated exactly except for roundoff errors.) To quantify the effect not on the integrals

as such but on the actual mappings, we estimate the relative differences between the

transfer operators Q, P, Q̃, Rr=0, Rr=1 and Rr=2 on the one hand and approximate

versions on the other hand.

For this purpose, composite quadrature formulas are employed. These rules are

generated by regular decompositions of the tetrahedron into m3 tetrahedra of the same

volume, m ∈ N+. Then, a rule of second order with four points is used on each of the

sub-elements. As the integrands are of low order but the integration domains may have

relatively complicated shapes, this is an appropriate choice; see Section 2.6.

We look at the decay of the quadrature error for the composite rules with m = 1, 2, 3
(that is 4, 32 and 108 points per element, respectively) using the results for m = 5 (i.e.,

500 points per element) as reference. Fig. 2 shows the relative errors in the evaluation

of the transfer operators in logarithmic scale. The results are given for the combinations

of the first five meshes of the ball, (Bi)1≤i≤5, namely we investigate Πj
i : Xi → Xj for

1 ≤ i < j ≤ 5 for different types of Π.

As expected, the quality of the approximation improves considerably as the num-

ber of integration points is increased. We also note that, for fixed coarse mesh Bi, the

error becomes smaller with increasing index j. This is obvious but cannot be seen in

the figure as we do not intend to label all the single lines. Other than that, we do not

experience any dependence on the mesh size. In particular, for the most critical combi-

nations (Bi,Bi+1)1≤i≤4, the errors depicted in Fig. 2 do not grow with increasing i.

The error decay is slightly different for the six transfer operators because both the

coarse-to-fine integrand (e.g., λjp λiq for Q versus ψj
p λiq for P) and the form of the error

transport vary (e.g., inverse mass matrix for Q versus diagonal scaling for Q̃). Regard-

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S100489790000012X
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 21:52:37, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S100489790000012X
https:/www.cambridge.org/core


306 T. Dickopf and R. Krause

4 32 108

10
−3

10
−2

10
−1

4 32 108

10
−3

10
−2

10
−1

4 32 108

10
−3

10
−2

10
−1

4 32 108

10
−3

10
−2

10
−1

4 32 108

10
−3

10
−2

10
−1

4 32 108

10
−3

10
−2

10
−1

Figure 2: Estimated relative errors with respect to | · |H1 of the operators Q, P , Q̃, Rr=0, Rr=1 and Rr=2

(from left to right) depending on the number of integration points per element. Each line represents the
error decay in one of the combinations (Bi,Bj)1≤i<j≤5.

less, we note that the composite quadrature rules produce very accurate approxima-

tions of the operators. The relative errors in the operators with respect to | · |H1 are of

the order of 1% or less; the errors with respect to ‖ · ‖L2 (not shown here) are even

smaller.

3.4. Quantitative analysis of the relations between the transfer operators

In this section, we present a quantitative study of the diverse transfer operators.

This eventually allows for arranging them in a map-like sketch illustrating similarities

and differences. In the charts designed for this purpose, the operators are marked

by the symbols and with the colors specified in Table 2 where they appear. Where

applicable, the operators are evaluated using a composite quadrature formula with

m = 4 as discussed in the previous section.

Table 2: Symbols and colors of the operators in the charts.

I Rr=0 Rr=1 Rr=2 Q Q̃ P

circle ◦ plus + square � crossing × diamond ♦ triangle △ dot •

(black) (orange) (green) (red) (petrol) (purple) (blue)

Section 2.1 Section 2.2 Section 2.2 Section 2.2 Section 2.3 Section 2.4 Section 2.5

Remark 3.1. To illustrate that the relations between the employed meshes are suffi-

ciently general, we consider rotations of the mesh B4 about the axis spanned by the sum

of the standard basis vectors (ei)1≤i≤3 by different, arbitrarily chosen angles. Table 3

states several relative differences for operators between these rotated meshes (for the

angles specified at the head) and the meshes B5 and B6. If there were distinguished re-

lations between the unrotated mesh and (some of) the other meshes, one would expect

the computed quantities to vary more significantly. This is not the case in this study

and the other studies we performed.
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Table 3: The setting is sufficiently general. The computed estimates of the operator norms are independent

of rotations of the meshes. We show exemplarily the relative differences between P and Q and between Q̃
and Q w.r.t. | · |H1 (top) and ‖ · ‖L2 (bottom), respectively, between meshes of different sizes.

0◦ 1◦ 2◦ 3◦ 4◦ 9.7◦ 17.1◦ 41.3◦

|P5

4 −Q5

4|H1/|Q5

4|H1 0.29 0.29 0.30 0.30 0.30 0.26 0.31 0.32

|Q̃5

4 −Q5

4|H1/|Q5

4|H1 0.61 0.61 0.61 0.63 0.64 0.62 0.59 0.61

|P6

4 −Q6

4|H1/|Q6

4|H1 0.29 0.29 0.28 0.27 0.26 0.25 0.28 0.28

|Q̃6

4 −Q6

4|H1/|Q6

4|H1 0.58 0.58 0.57 0.58 0.58 0.57 0.60 0.58

‖P5

4 −Q5

4‖L2/‖Q5

4‖L2 0.25 0.26 0.25 0.25 0.24 0.24 0.24 0.24

‖Q̃5

4 −Q5

4‖L2/‖Q5

4‖L2 0.53 0.53 0.53 0.54 0.55 0.55 0.53 0.53

‖P6

4 −Q6

4‖L2/‖Q6

4‖L2 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.20

‖Q̃6

4 −Q6

4‖L2/‖Q6

4‖L2 0.50 0.50 0.50 0.50 0.50 0.50 0.49 0.50

Now, for each geometric shape and then each of the following choices of two fi-

nite element meshes, (Bi,Bj), (Ci, Cj) and (Hi,Hj), 1 ≤ i < j ≤ 9, we consider the

distances of the generated operators Ij
i , (Rr=0)

j
i , (Rr=1)

j
i , (Rr=2)

j
i , Q̃

j
i , and Pj

i to the

L2-projection Qj
i between the spaces Xi and Xj . Fig. 3 and Fig. 4 show the relative dif-

ferences with respect to | · |H1 and ‖ · ‖L2 , respectively. The diagrams are arranged such

that a section marked by either Bi or Ci or Hi below (for some index i) comprises the

results for all the situations (Bi,Bj)i<j or (Ci, Cj)i<j or (Hi,Hj)i<j , each time ordered

by increasing j from left to right.

We point out two distinct facts established by the performed experiments and read-

ily understood by the figures. First, with decreasing ratio between fine and coarse mesh

size, all depicted operators approximate Q more accurately. This is because they have

the common property to preserve the constant functions, which has been mentioned

before. In a certain sense, a very fine mesh is “almost nested” in a very coarse mesh

and the coarse function is “almost constant” in the patches of the fine mesh; thus, the

operators asymptotically become more and more like the identity if the coarse mesh is

fixed.

The second, even more important result is the following. We see that, consistently

for all experiments, the pseudo-L2-projection is clearly the closest to the actual L2-

projection. In fact, it is remarkable how much closer this operator is to the orthogo-

nal projection compared to all other approaches. The standard interpolation and the

Clément-type interpolation with local polynomial degree r = 2, although being only

moderately close to each other as we show shortly, have a very similar distance to Q.

These two operators are the next closest to the orthogonal projection; they are roughly

twice as far away from Q as the pseudo-L2-projection is. The others are considerably

further away.

Another important point is that the ratio between fine and coarse mesh size is most

relevant for the considered distances but not the mesh size itself. This is illustrated in

Fig. 5 and Fig. 6. Here, we have collected several cases, each of four mesh combina-

tions, each with a roughly comparable ratio of the numbers of elements. The ranges
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(c) Half torus

Figure 3: Relative distances to the L2-projection Q with respect to | · |H1 for the meshes from Table 1.
Each marker represents one measurement (for example, the first blue dot marks |P2

1 −Q2

1|H1/|Q2

1|H1 , the
tenth black circle is |I4

2 − Q4

2|H1/|Q4

2|H1 and so forth). The labels (Bi)1≤i≤9, (Ci)1≤i≤9 and (Hi)1≤i≤9

indicate the sections where the particular space Xi is the same. In each of these sections, the results are
given for increasing j from left to right.

of this ratio are given in the description of Fig. 5. The classification is somewhat ar-

bitrary; however, the diagrams show that the approximate differences to Q and Rr=2,

respectively, do not vary significantly in the considered situations. Note that all charts

have the same scale on the vertical axes. As one has seen before in Fig. 3, the behavior

of I appears to be the least predictable.
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Figure 4: Relative distances to the L2-projection Q with respect to ‖ · ‖L2 (cf. Fig. 3).

Finally, to highlight the interconnections, we state the complete data, namely the

mutual relative distances between the operators with respect to | · |H1 , for one typical

setting. The results for the mappings generated between the spaces associated with B3

and B7 are given in Table 4 ordered by their proximity to the L2-orthogonal projec-

tion. In each cell, we state the relative difference of the two specified operators with

respect to the one in the current row. Please be assured that this example is indeed

representative.
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Figure 5: Relative distances to Q with respect to | · |H1 in selected situations. For the four cases within
each diagram, the ratio of the numbers of elements is roughly comparable. The ranges of this ratio are the
following: Ball: 1.9 to 2.1 (left); 5.8 to 6.3 (right). Cylinder: 3.0 to 3.4 (left); 5.9 to 6.3 (right). Half torus:
2.7 to 3.3 (left); 8.7 to 9.9 (right).
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Figure 6: Relative distances to Rr=2 with respect to | · |H1 in selected situations (cf. Fig. 5).

Table 4: Relative distances w.r.t. | · |H1 of the operators to each other in the situation (B3,B7). The
operators are ordered by their proximity to Q. The value in a cell is relative to the operator specified by the
row.

Q P Rr=2 I Q̃ Rr=1 Rr=0

Q 0.16 0.28 0.30 0.45 0.49 0.53

P 0.17 0.22 0.21 0.39 0.47 0.49

Rr=2 0.32 0.23 0.22 0.23 0.26 0.31

I 0.35 0.22 0.22 0.35 0.39 0.44

Q̃ 0.52 0.41 0.23 0.36 0.24 0.10

Rr=1 0.55 0.48 0.26 0.39 0.24 0.29

Rr=0 0.61 0.51 0.32 0.45 0.10 0.30

This section is concluded with a sketch summarizing the overall state. We visualize

the interconnections between the transfer operators by Fig. 7. In this map-like graph,

the lengths of the lines represent the distances of the connected operators with respect

to | · |H1 . We pick a typical situation; here, the operators generated from B3 to B7

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S100489790000012X
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 21:52:37, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S100489790000012X
https:/www.cambridge.org/core


Evaluating Local Approximations of the L2-Orthogonal Projection 311

Q
P

I

Rr=2

Rr=1

Rr=0

Q̃

Figure 7: The mutual relations of the single operators visualized as a map-like graph. The length of each
connecting line represents the H1-distance between the respective operators. The lines from or to the
L2-orthogonal projection Q are straight.

are considered. The studies throughout the paper confirm that other situations or

some averages yield essentially the same result as the sizes of the mutual distances are

reasonably stable.

4. Numerical studies for a complex geometry: the Stanford Bunny

In this section, we present numerical studies for the widely used bunny model pro-

vided by the Stanford 3D Scanning Repository [55]. This is done to further demon-

strate that the results seem to be largely independent of the underlying computational

domain.

The original geometry data from [55] describes a surface with boundary by 69,451

triangles. (There are five holes in the lower part of the geometry.) We want to con-

sider “the interior” of this surface as 3D computational domain. For this purpose, we

fixed the holes to obtain a closed surface which is the boundary of a simply connected

domain with the shape of the Stanford Bunny. This surface is in an intermediate step

approximated sufficiently accurately using NURBS, which is fairly standard in indus-

trial applications.

Then, as done in Section 3.1 for the simpler geometric shapes, unstructured volume

meshes are generated by standard tools from CUBIT [51]. We use the seven tetrahedral

meshes (Si)1≤i≤7 with their characteristics given in Table 5 ordered by the number of

elements. They are again completely independent of each other and cover a broad

range of sizes. Two of the meshes are illustrated in Fig. 8.

Proceeding as in Section 3, we study the mutual relations between the different

transfer operators when evaluated between the finite element spaces associated with

pairs of meshes (Si,Sj)1≤i<j≤7. Fig. 9 shows the relative distances of the operators to
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Table 5: Stanford Bunny: Characteristics of the independently generated meshes (Si)1≤i≤7.

#elements #nodes

S1 6,447 1,479

S2 12,732 2,720

S3 26,355 5,380

S4 41,256 8,216

S5 83,213 16,095

S6 124,576 23,856

S7 184,783 34,860

Figure 8: Stanford Bunny [55]: Examples for the meshes of Table 5. We show S2 (left) and S6 (right).
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Figure 9: Stanford Bunny: Relative distances to the L2-projection Q with respect to | · |H1 (cf. Fig. 3).

the L2-projection with respect to |·|H1. The results are very similar to the ones obtained

earlier for the simpler geometric shapes; cf. Fig. 3. The other findings of Section 3.4

hold true for the study of the Stanford Bunny, too. In particular the other measured

distances are very similar (not shown here).
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5. Conclusion

To investigate the information transfer between finite element spaces associated

with non-nested meshes, we examined a variety of transfer operators. The numeri-

cal studies provided insight into their mutual relations. We considered the standard

(nodal) finite element interpolation, Clément’s quasi-interpolation with different local

polynomial degrees, the globalL2-orthogonal projection, a localL2-quasi-projection via

a discrete inner product motivated by a quadrature rule, and a pseudo-L2-projection

defined by a Petrov-Galerkin variational equation with a discontinuous test space. We

reviewed basic properties of the operators and pointed out conceptual and implemen-

tational similarities and differences. The comprehensive computational comparison of

the transfer operators showed that the differences between them are substantial. For

the presented geometric test cases in 3D (unstructured meshes of ball, cylinder, half

torus and Stanford Bunny), the pseudo-L2-projection turned out to be clearly the clos-

est to the actual L2-projection compared to all other operators.
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the participants of the Söllerhaus Workshop on Domain Decomposition Methods in Oc-

tober 2011 and an anonymous referee for useful remarks on the topic of this paper.

We appreciate the help of Johannes Steiner in preparing the Stanford Bunny for the

experiments.

References

[1] Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)
[2] Ainsworth, H.: Octree C++ General Component (2005)

[3] Apel, T.: Anisotropic Finite Elements: Local Estimates and Applications. Advances in

Numerical Mathematics. Teubner, Stuttgart (1999)
[4] Apel, T.: Interpolation in h-version finite element spaces. In: E. Stein, R. de Borst, T.J.R.

Hughes (eds.) Encyclopedia of Computational Mechanics. Vol. 1. Fundamentals, pp. 55–

72. Wiley, Chichester (2004)
[5] Bank, R.E., Dupont, T.F., Yserentant, H.: The hierarchical basis multigrid method. Numer.

Math. 52(4), 427–458 (1988)
[6] Barber, C.M., Dobkin, D.P., Huhdanpaa, H.: The quickhull algorithm for convex hulls.

ACM Trans. Math. Softw. 22(4), 469–483 (1996)

[7] Bastian, P., Birken, K., Johannsen, K., Lang, S., Neuß, N., Rentz-Reichert, H., Wieners,
C.: UG – a flexible software toolbox for solving partial differential equations. Comput.

Vis. Sci. 1(1), 27–40 (1997)

[8] Ben Belgacem, F.: The mortar finite element method with Lagrange multipliers. Numer.
Math. 84(2), 173–197 (1999)

[9] Bernardi, C., Maday, Y., Patera, A.T.: A new nonconforming approach to domain decom-
position: the mortar element method. In: H. Brezis, J.L. Lions (eds.) Nonlinear Partial

Differential Equations and Their Applications, Pitman Res. Notes Math. Ser., vol. 299, pp.

13–51. Harlow: Longman Scientific & Technical, New York (1994)

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S100489790000012X
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 21:52:37, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S100489790000012X
https:/www.cambridge.org/core


314 T. Dickopf and R. Krause

[10] Braess, D.: Finite Elemente. Springer, Berlin (2007)
[11] Braess, D., Verfürth, R.: Multigrid methods for nonconforming finite element methods.

SIAM J. Numer. Anal. 27(4), 979–986 (1990)

[12] Bramble, J.H., Pasciak, J.E., Steinbach, O.: On the stability of the L2-projection in H1(Ω).
Math. Comp. 71(237), 147–156 (2002)

[13] Bramble, J.H., Pasciak, J.E., Vassilevski, P.S.: Computational scales of Sobolev norms
with applications to preconditioning. Math. Comp. 69(230), 463–480 (2000)

[14] Bramble, J.H., Pasciak, J.E., Wang, J., Xu, J.: Convergence estimates for multigrid algo-

rithms without regularity assumptions. Math. Comp. 57(195), 23–45 (1991)
[15] Bramble, J.H., Pasciak, J.E., Xu, J.: The analysis of multigrid algorithms with nonnested

spaces or noninherited quadratic forms. Math. Comp. 56(193), 1–34 (1991)

[16] Bramble, J.H., Xu, J.: Some estimates for a weighted L2 projection. Math. Comp.
56(194), 463–476 (1991)

[17] Brandt, A.: Multi-level adaptive solutions to boundary-value problems. Math. Comp.
31(138), 333–390 (1977)

[18] Brenner, S.C.: Convergence of nonconforming V -cycle and F -cycle multigrid algorithms

for second order elliptic boundary value problems. Math. Comp. 73(247), 1041–1066
(2004)

[19] Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, Texts in

Applied Mathematics, vol. 15. Springer, Berlin (2002)
[20] X.-C. Cai: The use of pointwise interpolation in domain decomposition methods with

non-nested meshes. SIAM J. Sci. Comput. 16(1), 250–256 (1995)
[21] Carstensen, C.: Quasi-interpolation and a posteriori error analysis in finite element meth-

ods. Math. Model. Numer. Anal. 33(6), 1187–1202 (1999)

[22] Carstensen, C.: Merging the Bramble-Pasciak-Steinbach and the Crouzeix-Thomée cri-
terion for H1-stability of the L2-projection onto finite element spaces. Math. Comp.

71(237), 157–163 (2002)

[23] Carstensen, C.: Clément interpolation and its role in adaptive finite element error control.
In: E. Koelink, J. van Neerven, B. de Pagter, G. Sweers (eds.) Partial Differential Equations

and Functional Analysis – The Philippe Clément Festschrift, Oper. Theory Adv. Appl., vol.
168, pp. 27–43. Birkhäuser, Basel (2006)
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