234 research outputs found

    Bi-stability resistant to fluctuations

    Full text link
    We study a simple micro-mechanical device that does not lose its snap-through behavior in an environment dominated by fluctuations. The main idea is to have several degrees of freedom that can cooperatively resist the de-synchronizing effect of random perturbations. As an inspiration we use the power stroke machinery of skeletal muscles, which ensures at sub-micron scales and finite temperatures a swift recovery of an abruptly applied slack. In addition to hypersensitive response at finite temperatures, our prototypical Brownian snap spring also exhibits criticality at special values of parameters which is another potentially interesting property for micro-scale engineering applications

    Muscle as a meta-material operating near a critical point

    Get PDF
    Passive mechanical response of skeletal muscles at fast time scales is dominated by long range interactions inducing cooperative behavior without breaking the detailed balance. This leads to such unusual "material properties" as negative equilibrium stiffness and different behavior in force and displacement controlled loading conditions. Our fitting of experimental data suggests that "muscle material" is finely tuned to perform close to a critical point which explains large fluctuations observed in muscles close to the stall force.Comment: Accepted for publication in Physical Review Letter

    Mechanics of collective unfolding

    Get PDF
    Mechanically induced unfolding of passive crosslinkers is a fundamental biological phenomenon encountered across the scales from individual macro-molecules to cytoskeletal actin networks. In this paper we study a conceptual model of athermal load-induced unfolding and use a minimalistic setting allowing one to emphasize the role of long-range interactions while maintaining full analytical transparency. Our model can be viewed as a description of a parallel bundle of N bistable units confined between two shared rigid backbones that are loaded through a series spring. We show that the ground states in this model correspond to synchronized, single phase configurations where all individual units are either folded or unfolded. We then study the fine structure of the wiggly energy landscape along the reaction coordinate linking the two coherent states and describing the optimal mechanism of cooperative unfolding. Quite remarkably, our study shows the fundamental difference in the size and structure of the folding-unfolding energy barriers in the hard (fixed displacements) and soft (fixed forces) loading devices which persists in the continuum limit. We argue that both, the synchronization and the non-equivalence of the mechanical responses in hard and soft devices, have their origin in the dominance of long-range interactions. We then apply our minimal model to skeletal muscles where the power-stroke in acto-myosin crossbridges can be interpreted as passive folding. A quantitative analysis of the muscle model shows that the relative rigidity of myosin backbone provides the long-range interaction mechanism allowing the system to effectively synchronize the power-stroke in individual crossbridges even in the presence of thermal fluctuations. In view of the prototypical nature of the proposed model, our general conclusions pertain to a variety of other biological systems where elastic interactions are mediated by effective backbones

    Cooperative folding of muscle myosins: I. Mechanical model

    Get PDF
    Mechanically induced folding of passive cross-linkers is a fundamental biological phenomenon. A typical example is a conformational change in myosin II responsible for the power-stroke in skeletal muscles. In this paper we present an athermal perspective on such folding by analyzing the simplest purely mechanical prototype: a parallel bundle of bi-stable units attached to a common backbone. We show that in this analytically transparent model, characterized by a rugged energy landscape, the ground states are always highly coherent, single-phase configurations. We argue that such cooperative behavior, ensuring collective conformational change, is due to the dominance of long- range interactions making the system non-additive. The detailed predictions of our model are in agreement with experimentally observed non-equivalence of fast force recovery in skeletal muscles loaded in soft and hard devices. Some features displayed by the model are also recognizable in the behavior of other biological systems with passive multi-stability and long-range interactions including detaching adhesive binders and pulled RNA/DNA hairpins

    L’attitude des artisans gallo-romains Ă  l’égard du travail manuel. Étude de l’iconographie lapidaire funĂ©raire

    Get PDF
    Cet article se propose d’étudier l’attitude des artisans gallo-romains Ă  l’égard du travail manuel Ă  partir du mode de reprĂ©sentation adoptĂ© sur leurs monuments funĂ©raires. Deux postures peuvent ĂȘtre ainsi mises en Ă©vidence : celle du travailleur manuel et celle de l’entrepreneur. L’analyse de la documentation iconographique nĂ©cessite la prise en compte de plusieurs critĂšres, comme la position des diffĂ©rentes images sur le monument, leur Ă©chelle, le nombre de personnages figurĂ©s et leurs vĂȘtements.In this article we study the attitude of Gallo-Roman craftsmen towards manual work from the way they were depicted on their funerary monuments. Two postures stand out: that of the craftsman and of the contractor. Several criteria have to be taken into account for the study of the iconographic records: the position of the images on the monument, their scale, the number of craftsmen depicted and what they are wearing

    Laurens E. Tacoma, Moving Romans: Migration to Rome in the Principate

    Get PDF
    Marie-Sophie Caruel ArticulĂ© autour de huit chapitres, l’ouvrage de L.E. Tacoma sur les migrations romaines aborde les questions liĂ©es au genre aux chapitres sur la famille (chap. 4) et sur le travail (chap. 6). La place faite aux femmes demeure donc relativement modeste et assez conventionnelle mĂȘme si les apports sur la question ne sauraient ĂȘtre qualifiĂ©s de nĂ©gligeables pour un sujet longtemps en marge des Ă©tudes sur la mobilitĂ©. Le cadre thĂ©orique proposĂ© dans cet ouvrage est celui d’une..

    Thermodynamical framework for modeling chemo-mechanical coupling in muscle contraction – Formulation and preliminary results

    Get PDF
    International audienceWe propose a multiscale model of cardiac contraction in which the molecular motors at the origin of the contractile process are considered as multistable mechanical entities endowed with internal degrees of freedom of both mechanical and chemical nature. This model provides a thermodynamical basis for modeling the complex interplay of chemical and mechanical phenomena at the sub-cellular level. Important motivations for this work include the ability to represent the experimentally observed physiological characteristics of the contractile apparatus such as (i) the passive quick force recovery mechanism, (ii) the relation between the contraction velocity and the applied force and (iii) the so called Lymn-Taylor cycle describing the metabolism.Nous proposons un modÚle multi-échelle de la contraction cardiaque dans lequel les moteurs moléculaires à l'origine du processus contractile sont représentés par des élé-ments mécaniques multistables paramétrés à la fois par des degrés de liberté géométriques et par des états chimiques. Ce modÚle permet de poser les fondements thermody-namiques permettant de décrire l'interaction complexe entre les phénomÚnes mécaniques et chimiques a l'échelle sub-cellulaire. Ce travail a pour objet de représenter les car-actéristiques physiologiques du dispositif contractile observées expérimentalement et en particulier (i) le mécanisme passif de récupération rapide de force, (ii) la relation entre la vitesse de contraction et la charge appliquée et (iii) le cycle dit de Lymn-Taylor décrivant l'activité métabolique. Abstract : We propose a multiscale model of cardiac contraction in which the molecular motors at the origin of the contractile process are considered as multistable mechanical entities endowed with internal degrees of freedom of both mechanical and chemical nature. This model provides a thermodynamical basis for modeling the complex interplay of chemical and mechanical phenomena at the sub-cellular level. Important motivations for this work include the ability to represent the experimentally observed physiological characteristics of the contractile apparatus such as (i) the passive quick force recovery mechanism, (ii) the relation between the contraction velocity and the applied force and (iii) the so called Lymn-Taylor cycle describing the metabolism

    Cooperative folding of muscle myosins: I. Mechanical model

    Get PDF
    Mechanically induced folding of passive cross-linkers is a fundamental biological phenomenon. A typical example is a conformational change in myosin II responsible for the power-stroke in skeletal muscles. In this paper we present an athermal perspective on such folding by analyzing the simplest purely mechanical prototype: a parallel bundle of bi-stable units attached to a common backbone. We show that in this analytically transparent model, characterized by a rugged energy landscape, the ground states are always highly coherent, single-phase configurations. We argue that such cooperative behavior, ensuring collective conformational change, is due to the dominance of long- range interactions making the system non-additive. The detailed predictions of our model are in agreement with experimentally observed non-equivalence of fast force recovery in skeletal muscles loaded in soft and hard devices. Some features displayed by the model are also recognizable in the behavior of other biological systems with passive multi-stability and long-range interactions including detaching adhesive binders and pulled RNA/DNA hairpins
    • 

    corecore