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SIMULTANEOUS REDUCED BASIS APPROXIMATION
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Abstract. The focus is on a model reduction framework for parameterized elliptic eigenvalue prob-
lems by a reduced basis method. In contrast to the standard single output case, one is interested
in approximating several outputs simultaneously, namely a certain number of the smallest eigenval-
ues. For a fast and reliable evaluation of these input-output relations, we analyze a posteriori error
estimators for eigenvalues. Moreover, we present different greedy strategies and study systematically
their performance. Special attention needs to be paid to multiple eigenvalues whose appearance is
parameter-dependent. Our methods are of particular interest for applications in vibro-acoustics.
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1. Introduction

For the fast and reliable evaluation of input-output relations for parameterized partial differential equations
(μPDEs), reduced basis methods have been developed over the last decade (see, e.g., [34, 37] or [33], Chap. 19
for comprehensive reviews), with the first reduced basis problem being investigated in the 1980’s [28]. The
methodology has been applied successfully to many different problem classes both in the real-time and the many-
query context. These problem classes include among others finite element discretizations of elliptic equations [37],
parabolic equations [15,35,39] and hyperbolic equations [7,16]. Furthermore the reduced basis method has been
extended to Stokes problems [20, 23, 36, 38] as well as to variational inequalities [13, 17] with a time-space
formulation of the problem and corresponding analysis. It was also applied to Stochastic Processes in [11, 40]
and to a finite volume scheme of a parameterized and highly nonlinear convection-diffusion problem with
discontinuous solutions in [9].

A posteriori error estimators w. r. t. parameter variations generally facilitate the construction of reduced basis
spaces by greedy algorithms as well as the certification of the outputs of the reduced models. Different greedy
methods for reduced basis and error estimators have been introduced in [26, 27, 41], also a greedy method for
eigenvalues is introduced in [6], and the convergence of greedy methods has been analyzed in [4, 5, 8]. Another
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way to construct a reduced space is the proper orthogonal decomposition (POD) method, as discussed, e.g.,
in [21, 33].

The problem class of parameterized elliptic eigenvalue problems (μEVPs) is highly important but up to now
only marginally investigated in the context of reduced basis methods. The first approach [24] from the year 2000,
which is based on [25] among others, is restricted to the special case of an estimator for the first eigenvalue. In
the following publications [30–32], the method from [24] is developed further to include several eigenvalues.

However, both the analysis and the algorithms do not cover the case of multiple eigenvalues. Quite often, the
“vectorial approach”, i.e., the treatment of the eigenvectors (ui(μ))1≤i≤K as an (FE dimension ·K)-dimensional
object and building the approximation space accordingly (cf. [31], Sect. 2.3.5), results in poor accuracy. This is
due to the fact that the possible savings from reduced problems of smaller size seem marginal if achievable at
all. In addition high-frequency information can and should be exploited for the approximation of low-frequency
information, an effect that is expected to become more and more important with increasing number of de-
sired eigenvalues. In [45], an elastic buckling problem is studied. While the model reduction is carried out
solely/primarily for a linear problem, the eigenvalue problem appears only in a second step.

Here, a new RB space is built from the eigenfunctions associated with the smallest eigenvalues at the previ-
ously identified parameters. A non-rigorous a posteriori bound is then computed by comparison with a reduced
space approximation of double size; cf. also [43]. Furthermore a component based RB method is studied for
eigenvalue problems in [42].

Very recently an RB method for the approximation of single eigenvalues in the context of parameterized
elliptic eigenvalue problems has been investigated in [12]. The authors derive a bound for the error in the first
eigenvalue which is assumed to be single.

The aim of this paper is to develop a model reduction framework for elliptic μEVPs. The application scenario
we target is the vibro-acoustics of cross-laminated timber structures. Here, a parameter-dependent eigenvalue
problem in linear elasticity, where the input parameters are the material properties of different structural
components, is to be solved many times during a design/optimization phase. Since the main part of a vibro-
acoustical analysis is the modal analysis, which not only takes the first eigenvalue into account, but all eigenvalues
under a certain frequency depending on the problem under investigation, the outputs of interest are the K
smallest eigenvalues with corresponding eigenfunctions. A characteristic feature of the considered μEVPs is the
appearance of multiple eigenvalues. In particular, the multiplicities depend on the parameters.

A particular challenge of the considered μEVPs is the rather large number of outputs of interest K, which in
our exemplary case ranges from two to twenty. We are interested in approximating these smallest eigenvalues
“simultaneously” in the sense that a single reduced space is constructed for the variational approximation
of the eigenvalue problem and that the individual a posteriori error estimators for the eigenvalues use the
online components provided offline. This allows us to generate an efficient and accurate simultaneous reduced
basis approximation. The large number of outputs of interest K justifies an increased computational effort by an
increased dimension N as compared to the standard single output case. In particular, any decent, i.e., sufficiently
accurate, approximation needs N � K. This approach constitutes a significant difference to the one taken in [12]
as our goal is a reduced basis approximation not only of one eigenvalue, but of a series of eigenvalues, including
eigenvalues with multiplicity greater than one. The parameter-dependence of the multiplicity of the eigenvalues
constitutes a major challenge in this context and is included into both our analysis and our algorithms.

Furthermore our experiments show that, in a greedy algorithm, it is usually not optimal to include the first
K eigenfunctions for a particular parameter, neither is it advisable to choose the same number of eigenfunctions
for different eigenvalues. This may be attributed to the fact that the smoothness of the input-output relation can
vary strongly with the different outputs of interest, i.e., the eigenvalues. We rather suggest to choose maximizing
parameters for K different error estimators, as described in Section 4.1. The reduced approximation should be of
comparable quality for a broad range of frequencies, although in structural acoustics the accuracy requirements
might decrease with increasing frequency. Note that, for the application scenario at hand, the number of desired
eigenpairs is typically in the order of ten for simple components and even larger for geometrically more complex
structures.
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The main contributions of this paper are the analysis of an asymptotically reliable error estimator including
the case of multiple eigenvalues and a series of algorithmic advancements. Our numerical results demonstrate
that tailored greedy strategies yield very efficient reduced basis spaces for the simultaneous approximation of
many eigenvalues for the considered problem class.

The rest of the paper is structured as follows: In Section 2, we describe the problem setting and introduce
the reduced basis method for μEVPs. Section 3 is devoted to the a posteriori error analysis w. r. t. parameter
variations. We also discuss how to evaluate the derived error estimators computationally. In Section 4, several
greedy algorithms are presented. We demonstrate the effectivity of our algorithms by numerical examples with
the application to linear elasticity in Section 5.

2. Problem setting

2.1. Parameterized eigenvalue problems in computational mechanics

Let the computational domain Ω ⊂ Rd, with d = 2, 3, be bounded and polygonal. As an elliptic eigenvalue
model problem, we consider the linear elasticity case. But all our results also hold true for more general elliptic
systems. Then, the eigenvalue problem in linear elasticity is given by

− div σ = λρu in Ω (2.1)

with boundary conditions prescribed as Dirichlet conditions on a closed non-trivial subset ΓD of ∂Ω and homo-
geneous Neumann conditions on ∂Ω \ ΓD. In addition, the linearized stress and strain tensors are defined as

σ(u) = C(μ)ε(u) and ε(u) =
1
2
(∇u +∇uT ),

respectively. We set the density ρ to 1 for simplicity. Furthermore, the set of admissible parameters is denoted
by P ⊂ RP and μ ∈ P stands for a vector of parameters. Then, C(μ) denotes the parameter-dependent Hooke’s
tensor, which we assume to be uniformly positive definite. To this end, let Ω be decomposed into non-overlapping
subdomains such that Ω =

⋃
s Ωs. We assume that the material parameters are piecewise constant w. r. t. this

decomposition. In the isotropic case, the parameters may be chosen as Young’s modulus E and Poisson’s ratio
ν such that P equals two times the number of structural components (i.e., subdomains). More precisely, we set
μ2s−1 = E|Ωs and μ2s = ν|Ωs in this case. The anisotropic case is treated analogously.

Let the bilinear forms a(·, ·; μ) : (H1(Ω))d×(H1(Ω))d → R and m(·, ·) : (L2(Ω))d×(L2(Ω))d → R be given by

(u, v) �→ a(u, v; μ) :=
∫

Ω

C(μ)ε(u) : ε(v) dx

and

(u, v) �→ m(u, v) := (u, v)L2(Ω) :=
∫

Ω

u · v dx.

Note that a(·, ·; μ) depends on the parameter vector μ whereas m(·, ·) and Ω do not.

Remark 2.1. The equations of linear elasticity are used as a model problem as we are interested in the
applications of vibro-acoustics. However this does not pose any restriction to the theoretical results shown in
the following. Thus we could replace a(·, ·, μ) by any H1 elliptic bilinear form.

Let V ⊂ {v ∈ (H1(Ω))d | v|ΓD = 0
}

be a fixed conforming finite element space of dimension N . Then, the
discrete variational formulation of (2.1) reads as: Find the eigenvalues λ(μ) ∈ R and the eigenfunctions u(μ) ∈ V
such that

a(u(μ), v; μ) = λ(μ)m(u(μ), v) ∀ v ∈ V (2.2)
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for given μ ∈ P . We assume that the eigenvalues are positive and numbered as

0 < λ1(μ) ≤ . . . ≤ λN (μ).

The corresponding eigenfunctions are denoted by ui(μ) ∈ V for i = 1, . . . ,N with the normalization

m(ui(μ), uj(μ)) = δij for 1 ≤ i, j ≤ N .

In the present context, the error of the finite element solution is assumed to be very small. This is achieved by
a fine mesh size leading to a large dimension N . The discretization error analysis can be found, e.g., in [1–3].

Let L ≥ 1 be the number of distinct eigenvalues of (2.2). For multiple eigenvalues, we use the standard notation
from [2] and denote the lowest index of the ith distinct eigenvalue by ki and its multiplicity by qi, i = 1, . . . , L.
We write Ki := {ki, . . . , ki + qi − 1}. (Here and in the following, the dependency of the index notations on μ is
suppressed as it is always clear from the context.) The corresponding eigenspaces are denoted by

Ui(μ) := span {uki(μ), . . . , uki+qi−1(μ)} .

Now, the goal is to find a computationally inexpensive but accurate surrogate model that can be used in the
many-query or real-time context.

2.2. Model reduction

We consider a variational approximation of the μEVP in an N -dimensional reduced space

VN := span {ζn | n = 1, . . . , N} ⊂ V, (2.3)

N � N . As a matter of fact, the choice of VN highly depends on the algorithmic methodology. Several (snapshot-
based) possibilities are investigated in Section 4.

Now, the “reduced eigenvalue problem” reads as

(ured(μ), λred(μ)) ∈ VN × R, a(ured(μ), v; μ) = λred(μ)m(ured(μ), v) ∀ v ∈ VN (2.4)

for given μ ∈ P . Let us emphasize that all eigenpairs of interest are approximated in the same space VN . As
before, we assume a numbering λred, i(μ), i = 1, . . . , N of the “reduced eigenvalues”. The minimum-maximum
principles guarantee that λi(μ) ≤ λred, i(μ) for i = 1, . . . , N ; see ([2], Sect. 8). Note that the multiplicity of
the finite element eigenvalues is not necessarily reflected in the reduced basis eigenvalues. The corresponding
eigenfunctions are denoted by ured, i(μ) ∈ VN for i = 1, . . . , N , again with the normalization

m(ured, i(μ), ured, j(μ)) = δij for 1 ≤ i, j ≤ N.

In practice, as mentioned before, one is only interested in the first K eigenvalues for any chosen parameter. We
expect that the dimension N required to achieve a certain accuracy will depend not only on the smoothness of
the parameter-dependency of the μPDE but also on the number of outputs K.

In the present context, a(·, ·; μ) is affine w. r. t. the parameter μ, i.e.,

a(u, v; μ) =
Q∑

q=1

Θq(μ)aq(u, v) (2.5)

for suitable parameter-independent bilinear forms aq : (H1(Ω))d × (H1(Ω))d → R and coefficients Θq : P → R,
which are readily derived from the constitutive equations. For instance, we have two terms per subdomain
in the isotropic case. This leads to a fast online evaluation as the cost of the assembly of the parameter-
dependent reduced systems (i.e., matrices in R

N×N associated with (2.4)) is independent of N . Note that the
expansion (2.5) will also be exploited for an online-offline decomposition of the error estimators.



SIMULTANEOUS REDUCED BASIS EIGENVALUE APPROXIMATION 447

0 50 100 150 200

10-8

10-6

10-4

10-2

100

EV1
EV2
EV3
EV4

0 50 100 150 200

10-8

10-6

10-4

10-2

100

EV1
EV2
EV3
EV4
EV5
EV6
EV7

Figure 1. Convergence of POD methods (0 < N ≤ 200) for the described μEVP with different
numbers of outputs of interest: Average relative errors in the eigenvalues λ1, . . . , λK for K = 4
(left) and K = 7 (right).

2.3. Model reduction by proper orthogonal decomposition

Before turning to the development of greedy methods and a posteriori error estimators for μPDEs, we illustrate
the potential of model reduction techniques in the context of parameter dependent eigenvalue problems with
multiple output values.

A common technique for model reduction is the proper orthogonal decomposition (POD) [21, 33, 34], which
yields the best possible reduced space (in the sense that, for a given series of snapshots, the projection error
w. r. t. the L2-norm is minimized). To this end, let S ⊂ V be a set of snapshots generated by solving the μ
EVP (each time for K eigenfunctions) for all parameters in a sufficiently large training set ΞPOD

train . Then, in the
definition (2.3) of the reduced space VN , orthonormalized functions {ζ1, . . . , ζN} ⊂ span{S} are selected such
that ∑

v∈S

‖v −ΠNv‖2L2(Ω)

is minimal. Here, ΠN is the L2-orthogonal projection to span {ζ1, . . . , ζN}. This essentially amounts to assem-
bling the #S×#S-correlation matrix of the snapshots in S w. r. t. (·, ·)L2(Ω) and finding its N largest eigenvalues
and corresponding eigenvectors. For a detailed description of the usage of POD methods in the present context,
see, e.g., [21, 33, 34].

Figure 1 illustrates the convergence of the POD method for K = 4 and K = 7. (The details of the underlying
numerical experiment are elaborated in Sect. 5). On the one hand, the results show that it is in principle possible
to construct one single reduced space that effectively captures the parameter-dependent behavior of the first K
eigenfunctions simultaneously. On the other hand, it is evident that the RB dimension N required for a certain
accuracy increases with K. More precisely, the asymptotic decay of the error is approximately C4 e−0.0513·N for
K = 4 and C7 e−0.0477·N for K = 7 for some constants C4 and C7. From the cost point of view the POD is quite
expensive, and thus we focus on computationally efficient greedy strategies in combination with a posteriori
error bounds.

3. A posteriori error estimation

In this section, we will establish a posteriori error estimators for our output quantities, in this case the
eigenvalues. It is important to determine such estimators in order to find out which basis functions should be
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selected by the greedy method. In particular, their computational evaluation must only depend on the basis
size N but not on the dimension of the finite element space N .

To this end, we first derive error bounds that still depend on the finite element eigenvalues, and in particular
on their multiplicities. Then, Section 3.2 is devoted to a computable approximation yielding the desired error
estimators.

In Section 3.3, we recall a standard online-offline decomposition.

3.1. Error bounds

Let the parameter-dependent energy norm be defined as ‖·‖μ;V := a(·, ·; μ)
1
2 . In addition to a parameter

dependent norm we are using a parameter indepenent norm defined as ‖·‖μ̂;V := â(·, ·) 1
2 := a(·, ·; μ̂)

1
2 . For a

linear functional r : V → R, we define the corresponding dual norms by

‖r‖μ;V ′ := sup
0�=v∈V

r(v)
‖v‖μ;V

and ‖r‖μ̂;V ′ := sup
0�=v∈V

r(v)
‖v‖μ̂;V

,

respectively.
The analysis and the practical implementation employ different error representations, namely the so-called

reconstructed errors w. r. t. the bilinear forms a(·, ·; μ) and â(·, ·). Using the residual

v �→ ri(v; μ) := a(ured, i(μ), v; μ)− λred, i(μ)m(ured, i(μ), v)

for i = 1, . . . , N , we define ei(μ) ∈ V and êi(μ) ∈ V by

a(ei(μ), v; μ) = ri(v; μ) ∀ v ∈ V (3.1)

and

â(êi(μ), v) = ri(v; μ) ∀ v ∈ V, (3.2)

respectively. In particular, ‖ri(·; μ)‖μ;V ′ = ‖ei(μ)‖μ;V and ‖ri(·; μ)‖μ̂;V ′ = ‖êi(μ)‖μ̂;V .
For any μ ∈ P , assume that g(μ) > 0 is a generalized coercivity constant such that g(μ)â(v, v) ≤ a(v, v; μ) for

all v ∈ V . (Technically speaking, g(μ) is the parameter-dependent coercivity constant of a(·, ·; μ) w. r. t. ‖·‖μ̂;V .)
This implies

‖r‖μ;V ′ ≤ g(μ)−
1
2 ‖r‖μ̂;V ′ (3.3)

for any r ∈ V ′ and

‖v‖μ̂;V ≤ g(μ)−
1
2 ‖v‖μ;V (3.4)

for any v ∈ V .
We are now ready to prove the error bounds. The following theorem, combined with the computa-

tional/algorithmic aspects in Section 3.2 and Section 4, generalize the results of [24, 30–32] for the case of
multiple eigenvalues.

Theorem 3.1. Let 1 ≤ i ≤ L such that ki + qi − 1 ≤ N . For j = 1, . . . , qi, set

d̃ki+j−1(μ) := min
N≥l>ki+qi−1

∣∣∣∣λl(μ)− λred, ki+j−1(μ)
λl(μ)

∣∣∣∣ · (3.5)
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Then,

0 ≤ λred, ki+j−1(μ)− λki (μ) ≤ ‖rki+j−1(·; μ)‖2μ;V ′

d̃ki+j−1(μ)

(
1 +
‖rki+j−1(·; μ)‖μ;V ′

d̃ki+j−1(μ)2
√

λki

)
· (3.6)

Proof. Fix μ ∈ P , 1 ≤ i ≤ L and 1 ≤ j ≤ qi. Let ured, ki+j−1(μ) =
∑N

l=1 αlul(μ) and eki+j−1(μ) =
∑N

l=1 βlul(μ).
By (3.1), we find

βl = αl
λl(μ)− λred, ki+j−1(μ)

λl(μ)
·

Therefore, we get

‖rki+j−1(·; μ)‖2μ;V ′ =
N∑

l=1

α2
l

(
λl(μ)− λred, ki+j−1(μ)

λl(μ)

)2

λl(μ)

≥
∑

l>ki+qi−1

α2
l

(
λl(μ)− λred, ki+j−1(μ)

λl(μ)

)2

λl(μ)

≥ d̃ki+j−1(μ)2
∑

l>ki+qi−1

α2
l λl(μ). (3.7)

Using the fact that
∑

l α
2
l = 1, λl(μ) ≤ λki(μ) for l ≤ ki+qi−1, we find for the difference between approximated

and detailed eigenvalue

Δλki := λred, ki+j−1(μ)− λki (μ) = a(ured, ki+j−1(μ), ured, ki+j−1(μ); μ)− λki(μ)

=
N∑

l=1

α2
l λl(μ)− λki(μ)

=
∑

l≤ki+qi−1

α2
l (λl(μ)− λki(μ)) +

∑
l>ki+qi−1

α2
l (λl(μ) − λki(μ))

≤
∑

l>ki+qi−1

α2
l (λl(μ)− λki(μ)). (3.8)

From this we obtain two upper bounds for Δλki . The first one follows trivially from the fact that λki(μ) > 0
and (3.7)

Δλki ≤
∑

l>ki+qi−1

α2
l λl(μ) ≤ ‖rki+j−1(·; μ)‖2μ;V ′

d̃ki+j−1(μ)2
· (3.9)

The second bound is based on the Cauchy–Schwarz inequality and on Young’s inequality. In terms of,

(λl(μ)− λki(μ))2 ≤ (1 + ε)(λl(μ)− λred, ki+j−1(μ))2 +
(

1 +
1
ε

)
(Δλki )

2
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for ε > 0, we get from (3.7) and (3.8)

Δλki =
∑

l>ki+qi−1

αl
λl(μ)− λki(μ)

λl(μ)

√
λl(μ)αl

√
λl(μ)

≤
⎛
⎝ ∑

l>ki+qi−1

α2
l (

λl(μ)− λki(μ)
λl(μ)

)2λl(μ)

⎞
⎠

1
2
⎛
⎝ ∑

l>ki+qi−1

α2
l λl(μ)

⎞
⎠

1
2

≤ 1
d̃ki+j−1(μ)

‖rki+j−1(·; μ)‖μ;V ′

√
(1 + ε) ‖rki+j−1(·; μ)‖2μ;V ′ + (1 +

1
ε
)Δλ2

ki

∑
l>ki+qi−1

α2
l

1
λl(μ)

≤ 1
d̃ki+j−1(μ)

‖rki+j−1(·; μ)‖μ;V ′

√
(1 + ε) ‖rki+j−1(·; μ)‖2μ;V ′ + (1 +

1
ε
)

Δλ2
ki

λki (μ)

≤ 1
d̃ki+j−1(μ)

‖rki+j−1(·; μ)‖2μ;V ′

√√√√1 + ε + (1 +
1
ε
)
‖rki+j−1(·; μ)‖2μ;V ′

d̃ki+j−1(μ)4λki(μ)
·

Setting ε =
‖rki+j−1(·;μ)‖

µ;V ′
d̃ki+j−1(μ)2

√
λki

(μ)
gives the upper bound in (3.6). The lower bound follows directly from ([2],

Sect. 8). �

Besides the generalization to multiple eigenvalues, let us point out that our bounds are sharper than the ones

(e.g., [32], Prop. 1), as the lowest order term in (3.6) is of the form
‖rki+j−1(·;μ)‖2

µ;V ′
d̃ki+j−1(μ)

rather than
‖rki+j−1(·;μ)‖2

µ;V ′
d̃ki+j−1(μ)2

.

Note that the error bounds in Theorem 3.1 still depend on the finite element solution via the eigenvalues λl(μ)
in (3.5).

Remark 3.2. It is also possible to give an upper bound for the eigenvectors by replacing d̃ki+j−1(μ) by
d̂ki+j−1(μ) defined as

d̂ki+j−1(μ) := min
N≥l>ki+qi−1 ∨ l<ki

∣∣∣∣λl(μ)− λred, ki+j−1(μ)
λl(μ)

∣∣∣∣ .
Using now Πi : V → Ui(μ) as the orthogonal projection w. r. t. the L2-inner product, we define v̄ :=
Πi(ured, ki+j−1(μ)) =

∑
N≥l>ki+qi−1 ∨ l<ki

αlul(μ) and give the upper bound as

‖ured, ki+j−1(μ)− v̄‖2μ;V =

∥∥∥∥∥∥
∑

N≥l>ki+qi−1 ∨ l<ki

αlul(μ)

∥∥∥∥∥∥
2

μ;V

=
∑

N≥l>ki+qi−1 ∨ l<ki

α2
l λl(μ) ≤ ‖rki+j−1(·; μ)‖2μ;V ′

d̂ki+j−1(μ)2
·

3.2. Error estimators

We now derive approximate error bounds that are computable in the sense that they do not depend on the
finite element solution. To achieve this, it remains to approximate d̃i, which may be interpreted as a measure
for the relative distance between neighboring/adjacent eigenvalues, particularly to decide which of the indices
to exclude from the minimum. We point out that the dimension of the (detailed) eigenspace is not accessible.
The application scenario we have in mind features multiple eigenvalues with their multiplicities depending on
the parameter. It is therefore impossible to determine the structure of the spectrum (i.e., the indices ki or the
index sets Ki) a priori.
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Recall that the first K eigenvalues are the output quantities of interest. Assume that the reduced basis
method converges in the following sense: for μ ∈ P and 1 ≤ i ≤ K,

λred, i(μ)→ λi(μ) for N → N .

In particular, λred, j(μ)→ λki(μ) for N → N for j ∈ Ki.
Given the eigenvalues λred, i(μ), i = 1, . . . , K, of (2.4), we replace λl(μ) in (3.5) by λred, l(μ) and approximate

Ki by

Kred, i :=
{

1 ≤ j ≤ K + r;
∣∣∣∣λred, j(μ)− λred, i(μ)

λred, j(μ)

∣∣∣∣ < ελ

}
for a chosen “tolerance” ελ > 0 and with r as the difference between the index of the first eigenvalue after the
multiplicity of the Kth eigenvalue and the Kth eigenvalue itself. In the case that we know a priori the maximal
multiplicity of all relevant eigenvalues for all parameters, we set r equal to this value. Otherwise we select it
adaptively during the initialization phase of the greedy method. More precisely, we start with r = 1 and increase
it by one as long as K + r ∈ Kred, i. Thus #Kred, i will be our best guess for the multiplicity of the eigenvalue
to which λred, i(μ) converges. Then for 1 ≤ i ≤ K,

di(μ) := min
l �∈Kred, i

K+r≥l>i

∣∣∣∣λred, l(μ)− λred, i(μ)
λred, l(μ)

∣∣∣∣ (3.10)

is the relative distance of λred, i(μ) to the reduced eigenvalues that are further away than the chosen tolerance ελ.
The adaptive selection of r guarantees that even for i = K and multiple eigenvalues di(μ) is easily computable
and does not severely underestimate d̃i(μ).

Finally, since we are looking for an asymptotic estimator for the relative error in the eigenvalues which is
cheaply computable in the online-phase, we neglect the higher order term in (3.6). In addition, the parameter-
dependent norm ‖·‖μ;V ′ is replaced by the parameter-independent norm ‖·‖μ̂;V ′ by (3.3), which introduces an
additional factor g(μ)−1. To summarize we can state the following corollary:

Corollary 3.3. Let i = 1, . . . , K and λred, i(μ)→ λi(μ) for N → N . Furthermore let Kred, i be defined as above
and the distance between neighboring eigenvalues di(μ) be given as in (3.10). Then the error estimator given by

μ �→ ηi(μ) :=
‖ri(·; μ)‖2μ̂;V ′

g(μ) · di(μ) · λred, i(μ)
· (3.11)

is asymptotically reliable in the sense that

0 ≤ λred, ki+j−1(μ)− λki(μ)
λki

≤ Cηi(μ),

with C tending to one as N tends to N .

Note that the approximation in (3.10) is, in general, less accurate for i = K. This is because the space VN

is built to approximate well the K outputs, but for the Kth estimator we need the (K + r)th outputs with
r ≥ 1, which are approximated only roughly. The tolerance ελ has to be selected such that it reflects the desired
accuracy of the RB approximation.

3.3. Online-offline decomposition

All error estimator contributions may be decomposed as already outlined in [24]. Let (ζn)1≤n≤N be the
orthonormal basis (w. r. t. m(·, ·)) of VN . For 0 ≤ q, p ≤ Q let Âq,p ∈ RN×N with Âq,p

n,m := â(ξq
n, ξp

m) for
1 ≤ n, m ≤ N where

â(ξq
n, v) = aq(ζn, v), ∀ v ∈ V, 1 ≤ n ≤ N, 1 ≤ q ≤ Q, (3.12)
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and
â(ξ0

n, v) = m(ζn, v), ∀ v ∈ V, 1 ≤ n ≤ N. (3.13)

In the following, we identify the function ured, i(μ) ∈ VN and its vector representation w. r. t. the basis (ζn)1≤n≤N

such that (ured, i(μ))n denotes the nth coefficient. Then, given a reduced eigenpair (ured, i(μ), λred, i(μ)), we have
the error representation

êi(μ) =
N∑

n=1

Q∑
q=1

Θq(μ) (ured, i(μ))n ξq
n − λred, i(μ)

N∑
n=1

(ured, i(μ))n ξ0
n

by (3.2). Consequently, the main contribution of ηi(μ) decomposes into

‖ri(·; μ)‖2μ̂;V ′ =
N∑

n=1

N∑
m=1

Q∑
q=1

Q∑
p=1

(ured, i(μ))n (ured, i(μ))m Θq(μ)Θp(μ) Âq,p
n,m

+ λ2
red, i(μ)

N∑
n=1

N∑
m=1

(ured, i(μ))n (ured, i(μ))m Â0,0
n,m

− 2 λred, i(μ)
N∑

n=1

N∑
m=1

Q∑
q=1

(ured, i(μ))n (ured, i(μ))m Θq(μ) Âq,0
n,m.

We recall that only a single reduced space is built for the approximation of all eigenvectors simultaneously.
Thus the above decomposition uses the same offline ingredients for all 1 ≤ i ≤ K. In particular, the number K
of desired eigenpairs does not directly influence the complexity (only via the reduced space dimension N).

4. Algorithms / Basis construction

In this section, we present different greedy strategies that employ the error estimators of Section 3 to build
the reduced space in equation (2.3). The advantage as compared to the POD method motivated in Section 2.3
is that only relatively few finite element solutions of the μEVP need to be computed.

Since we use a single space for the approximation of multiple outputs, we have several natural possibilities
which are investigated in Section 4.1. Section 4.2 is devoted to an extension that takes into account multiple
eigenvalues. In Section 4.3, a remedy for the potential unreliability of the error estimators for small N is
discussed.

4.1. Greedy selection of snapshots for single eigenvalues

Recall that the K smallest eigenvalues are the quantities of interest, where K is typically 2−20 for our
application scenario. In principle, given a reduced space, one could try to identify a suitable μ ∈ P and then
include the first K eigenfunctions for this parameter value. (In each greedy step, this would require the detailed
FE solution of (2.2) for one parameter only.) However, numerical studies clearly show that this naive choice
is far from optimal as the generated reduced spaces tend to be much too large. This is because the errors in
the individual eigenvalues and eigenfunctions are only very weakly correlated, if at all. There are at least the
following two much more natural options.

Let a sufficiently rich training set Ξtrain ⊂ P be given. Then, in Algorithm 1, the individual argmax for
each 1 ≤ i ≤ K is chosen separately. In contrast, Algorithm 2 chooses only one single argmax. Note that both
Algorithm 1 (line 7) and Algorithm 2 (line 6) require the evaluation of all error estimators at all parameters
in Ξtrain to determine the choice of μ. This does not lead to large computations since the calculations are only
performed with the reduced space of size N , such that we obtain K reduced eigenpairs for any μ ∈ Ξtrain, see
also Section 3.3. However, Algorithm 1 (line 10) and Algorithm 2 (line 8) require also finite element solutions
which then determine the reduced basis space.
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Algorithm 1. Multi-choice greedy.
1: for i = 1, . . . , K do
2: ζi ← ui(μ̂)
3: end for
4: N ← K
5: while N < Nmax do
6: for i = 1, . . . , K do
7: μmax,i ← argmaxμ∈Ξtrain

ηi(μ)
8: if ηi(μmax,i) > εtol then
9: N ← N + 1

10: ζN ← ui(μmax,i) (orthonormalized)
11: end if
12: end for
13: if maxμ∈Ξtrain,1≤i≤K ηi(μ) < εtol then
14: break
15: end if
16: end while

Algorithm 2. Single-choice greedy.
1: for i = 1, . . . , K do
2: ζi ← ui(μ̂)
3: end for
4: N ← K
5: while N < Nmax do
6: (μmax, imax)← argmaxμ∈Ξtrain,1≤i≤K ηi(μ)
7: N ← N + 1
8: ζN ← uimax(μmax) (orthonormalized)
9: if maxμ∈Ξtrain,1≤i≤K ηi(μ) < εtol then

10: break
11: end if
12: end while

The multi-choice variant rests on the intuition that the individual eigenfunctions can/should be approxi-
mated separately. In contrast, the single-choice variant takes into account that the approximation power of
eigenfunctions to large eigenvalues can be exploited also for eigenfunctions to smaller eigenvalues.

During the greedy procedure, we orthonormalize the selected basis functions. Not only does this yield small
condition numbers of the reduced systems; it is also beneficial for the special treatment of multiple eigenvalues
described in the next section.

In Algorithm 1 (line 10) and Algorithm 2 (line 8), an orthonormalization is performed. For this purpose, let
ΠN : V → VN be the L2-orthogonal projection to the current reduced space. For a snapshot candidate ζ ∈ V
(i.e., one of the eigenfunctions chosen as described above), we compute ζ̃ := ζ−ΠNζ. Then, if ‖ζ̃‖ is sufficiently
large (≥ εproj), the “new contribution” ζ̃

‖ζ̃‖ is included in the reduced basis; see also Section 4.2.

4.2. Extended selection for multiple eigenvalues

In case of multiple eigenvalues, the greedy method needs to be modified as follows. Assume an index 1 ≤ ı̃ ≤ K
and a parameter μ̃ have been selected by means of the eigenvalue-based estimators (ηi)i=1,...,K , in Algorithm 2
(line 6), or several parameters μ̃ have been selected in Algorithm 1 (line 7), such that the span of uı̃(μ̃) is to be
included in the reduced space.
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However, a large value of ηı̃(μ̃) merely indicates that the corresponding (fine) eigenspace Uı̃(μ̃) contains
functions that are badly approximated by the current reduced space. Nevertheless the eigenspace might also
contain other functions that are already well approximated. Consequently, if the detailed eigenvalue associated
with a chosen snapshot has multiplicity greater than one, we aim to add all the eigenfunctions for the multiple
eigenvalue, except the ones which are already approximated well enough. A motivation for exploring the whole
eigenspace for multiple eigenvalues is to guarantee that we take the correct eigenvalue/eigenfunction, since we
cannot ensure that the indexed eigenvalue/eigenfunction in the reduced space is the same as in the detailed
calculation. This is due to the fact that there is no prescribed ordering for the eigenfunctions corresponding to
a multiple eigenvalue.

As for the definition of di(μ) one has to compute a sufficient number K ′ > K of eigenfunctions of the finite
element problem μEVP (2.2) such that λK′(μ̃)/λK(μ̃) > 1+ελ. Then, lines 9–10 in Algorithm 1 are replaced by:

for all j ≥ 1 with |λj(μmax,i)− λi(μmax,i)|/λi(μmax,i) ≤ ελ do
if ‖uj(μmax,i)−ΠNuj(μmax,i)‖L2(Ω) ≥ εproj then

N ← N + 1
ζN ← uj(μmax,i) (orthonormalized)

end if
end for

Analogously, lines 7–8 in Algorithm 2 now read as:

for all j ≥ 1 with |λj(μmax)− λimax(μmax)|/λimax(μmax) ≤ ελ do
if ‖uj(μmax)−ΠNuj(μmax)‖L2(Ω) ≥ εproj then

N ← N + 1
ζN ← uj(μmax) (orthonormalized)

end if
end for

Here, ΠN : V → VN denotes the L2-orthogonal projection. The parameter εproj is a small tolerance that prevents
the selection of functions that are already approximated sufficiently well.

4.3. Initialization of the greedy method

In our calculations, we need an error estimator for the Kth eigenvalue. For the computation of this estimator,
we need a rough approximation of the (K + r)th eigenvalue. In order to ensure that our reduced space has
the ability to roughly approximate this (K + r)th eigenvalue, we use an initial approximation space in which
we include the corresponding components. We suggest to include components using the proper orthogonal
decomposition method described in Section 2.3 (with N = Ninit) applied to a small number of snapshots. Here,
the snapshots S ⊂ V are associated with a training set ΞPOD

train typically of size 2P , taking into account the
extension described in Section 4.2. This initial approximation space of dimension Ninit, which is constructed
as an initialization step for the greedy algorithm, should be sufficiently large as the reliability of the error
estimators analyzed in Section 3 can depend on the dimension of the reduced space. To make sure that we are
able to calculate and to approximate the (K + r)th eigenvalues, we chose our Ninit to be at least (K + r) times
a factor ≥ 1.5.

5. Numerical results

In this section, the performance of the proposed algorithms is illustrated by numerical examples, in two
and in three dimensions. For the two-dimensional calculations we use plane strain elasticity while for the three-
dimensional simulations we use linear elasticity. The implementation is performed in MATLAB based on the
RBmatlab [10] library. We investigate the individual components and highlight their benefits in several steps.
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5.1. Preliminaries

First, in Section 5.2 to Section 5.5, we choose Ω as rectangle of size 3.0 × 1.0 with Dirichlet boundary on
the left and on the right. Let Ω be split into three subdomains of size 1.0 × 1.0. The material parameters E
and ν used for these subdomains are in the range of 10−100 and 0.1−0.4, respectively; we have P = 6 and
Q = 6. We choose a uniform random sample of size 10 000 as set of training parameters Ξtrain ⊂ P . To evaluate
the errors, another sufficiently rich set of parameters Ξtest ⊂ P is used of size 1000. For our initial space we
choose Ninit ≤ 40, depending on the desired number of eigenvalues K. We always report the average errors of
the reduced approximations given by

1
#Ξtest

∑
μ∈Ξtest

λred, i(μ)− λi(μ)
λi(μ)

and comment on the standard deviation at the end of Section 5.4 in Remark 5.1.
For the generalized coercivity estimate, we exploit the affine decomposition of the bilinear form and set

g(μ) := min
q=1,...,Q

Θq(μ)
Θq(μ̂)

· (5.1)

We emphasize that g(μ) merely relates the bilinear forms a(·, ·; μ) and â(·, ·); a coercivity estimate for a(·, ·; μ)
itself is not required in the present context. Note that (5.1) indeed yields an admissible parameter-dependent
constant provided the bilinear forms aq(·, ·) in (2.5) are positive semi-definite and the coefficient functions Θq(·)
in (2.5) are positive; (see, e.g., [29], Sect. 4.2.2). This is true for our application. Better results (i.e., a larger lower
bound) could be obtained by the more expensive successive constraint method [19]. In the present setting, the
estimate (5.1) is typically smaller than the exact solution of the corresponding generalized eigenvalue problem
by a factor ranging from 0.7 to 0.98.

5.2. Extended selection vs. non-extended selection

We first illustrate the necessity of the extended selection for multiple eigenvalues. Figure 2 shows the behavior
of a POD method with (left) and without (right) the extended selection described in Section 4.2 for the first
two eigenvalues (K = 2). Figure 3 shows the same comparison for the greedy method (Algorithm 2). For both
the POD method and the greedy method, we observe that in the variants without extension the convergence for
the second eigenvalue becomes slower after a certain number of basis functions has been included. In contrast,
the extended selection yields convergence curves that approximately coincide.

The shortcomings of the non-extended methods may be explained by the fact that the second eigenvalue has
multiplicity two for certain parameters and in these cases, for the multiple eigenvalue, the correct eigenfunction
is not necessarily chosen. Note that the effect is more significant for a smaller POD training size (Fig. 2, second
row) as it is less likely that all directions of an eigenspace are present in the snapshot set. The convergence
of the second reduced eigenvalue possibly improves drastically if, incidentally, the missing component is added
during the greedy method.

5.3. Multi-choice vs. single-choice greedy method

Here, we illustrate the benefit of Algorithm 2 in comparison to Algorithm 1. In Figure 4, for K = 4, one can
see that with Algorithm 1 (left) the convergence behavior varies over the course of the greedy method while
with Algorithm 2 (right) all desired eigenvalues exhibit similar convergence. (This also holds true for the errors
in the eigenfunctions not shown here.)

The poor convergence of the third eigenvalue only improves rapidly at N ≈ 170, after the other three
eigenvalues have reached an accuracy in the order of the target tolerance, and thus the algorithm only chooses
EV3. This effect (namely an imbalanced resolution of the relevant eigenspaces during the greedy method)
is directly related to the inappropriate a priori assumption of Algorithm 1 that roughly the same number
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Figure 2. Error decay for the eigenvalues with the POD method: extended (left) vs. non-
extended (right). First row: training size 10 000; second row: training size 1000.
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Figure 3. Error decay for eigenvalues with the greedy method: extended (left) vs. non-extended
(right); training size 1000.
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Figure 4. RB error decay: comparison of Algorithm 1 (left) and Algorithm 2 (right) for K = 4.
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Figure 5. Left and center: accumulated numbers of chosen eigenfunctions over the course of
Algorithm 2 for K = 4 and K = 7. Right: error decay for K = 7.

of snapshots corresponding to the first K eigenvalues should be included in the reduced space. At this point it
should also be noted that in general Algorithm 1 creates a larger RB space than Algorithm 2 as soon as more
eigenvalues have a poor convergence.

To further illustrate the behavior of the single-choice greedy method, in Figure 5, we report the accumulated
numbers of chosen eigenfunctions corresponding to λ1, . . . , λK over the course of Algorithm 2 for K = 4 (left)
and K = 7 (center), as selected by the error estimators in line 6. The reason for the greedy algorithm not
selecting any eigenfunctions before a basis size of 40 is that this is the size of our initial space. The respective
error decay for K = 7 is depicted in Figure 5 (right). Note that the good convergence (in particular, similar
rates for all outputs of interest simultaneously) is achieved by a rather uneven distribution. The diagrams
indicate that, for both values of K, larger eigenvalues as well as possibly double eigenvalues are preferred by
the algorithm. This and the fact that, although fewer eigenfunctions are included for the smaller eigenvalues
than for the larger ones, but nevertheless the error decay is equal, mean that the eigenfunctions corresponding
to larger eigenvalues are effectively used to approximate the ones corresponding to smaller eigenvalues.
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Figure 6. Comparison of Algorithm 2 without (top) and with (bottom) the initialization de-
scribed in Section 4.3 for K = 5 for a selected case in which the greedy algorithm without
initialization does not fail. RB error decay (left), effectivity numbers (center) and accumulated
index counts (right).

5.4. Effectivity of the greedy method

In this section, we investigate the performance of the greedy method in more detail. For this purpose, we also
consider the effectivity numbers γi, 1 ≤ i ≤ K, of the error estimators and its maximal ratio R defined by

γi :=
1

#Ξtest

∑
μ∈Ξtest

ηi(μ) · λi(μ)
λred, i(μ)− λi(μ)

, R :=
maxi=1,...,K γi

mini=1,...,K γi
·

As already mentioned, the estimators derived in Section 3 are of asymptotic character and therefore generally
not reliable for small N . To prevent a misleading selection of basis functions in the first few greedy steps, the
initialization described in Section 4.3 is used to generate an initial basis.

Figure 6 shows the error decay (left), the effectivity numbers of the a posteriori estimators (center) and
the accumulated index counts (right) for K = 5 with and without the initialization. In this case, a similar
convergence is achieved for both algorithms, and the index count plots also shows a similar behavior. In the
preasymptotic range, we observe a difference in the effectivity numbers. Without initialization these numbers
possibly depend sensitively on the selected snapshots. While this does not influence the overall performance
for K = 5, for K = 7 we do get extremely poor results if we start directly with the greedy algorithm. This is
caused by the fact that the approximation of d̃i(μ) by di(μ) is then not reliable. Thus we always include the
initialization step in our adaptive algorithms.

In our experiments, the described initialization always prevents the effectivity numbers from having jumps
and leads to good convergence of the greedy methods. For instance, Figure 7 shows the effectivity measures cor-
responding to the error curves from Figure 4 (right) and Figure 5 (right). The effectivities are virtually constant
and close together which is reflected in a small value of R. This is of crucial importance for the performance
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Figure 7. Effectivity numbers of the estimators for K = 4 (left) and K = 7 (right).
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Figure 8. Effectivity numbers for the eigenfunctions for K = 4.

of our Algorithm 2. In all our settings R is below five, e.g., R = 3.41 for K = 4. Note that for K = 4 and K = 7,
the same eigenvalues show similar effectivities. A high effectivity ratio R possibly leads to an oversampling
of the eigenfunctions associated with the indices of a high effectivity and thus a loss in the performance. At
this point although our error estimators are for eigenvalues, we want to show that also the effectivities for the
eigenvectors are constant and close together. To do so we depict the results in Figure 8.

After having demonstrated the performance of the single components of our algorithm, let us compare the
results of our greedy method using the error estimator and the best components with the convergence of the
POD method; cf. Section 2.3. Comparing the error plots in Figure 1 with the ones in Figure 4 (right) and
Figure 5 (right), we see that we achieve very similar convergence behavior. In particular, the error curves of
our simultaneous reduced basis approximation for the individual eigenvalues are similarly close to each other.
Moreover, the accuracy reached at N ≈ 200 differs only by a factor of roughly ten. We recall that the POD
method uses the full training set (namely 10 000 finite element solutions in this case which leads to a computation
time of over 10 h) to reach this accuracy while the greedy method only needs a couple of hundred detailed
simulations and the evaluation of the estimator which leads in this case to a computation time of 6−7 h.
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Figure 9. RB discretization error for K = 6 with standard deviation (as unidirectional error
bar) for EV2 to EV5.

It should be noted that this gap in computation time between POD and Greedy increases further with the
complexity of the detailed solution.

Let us emphasize that the bounds from [32], i.e., di(μ)2 in the denominator of (3.11) instead of di(μ), lead
to a large ratio of the maximal and minimal effectivity value and thus to poorer results in the multiple output
case. Highly different effectivity numbers result in an over-selection of eigenfunctions associated with the largest
effectivity numbers and thus in a performance loss, hence, to a much less attractive greedy algorithm.

Remark 5.1 (Error evaluation). For completeness, Figure 9 shows a convergence plot including the standard
deviation for K = 6. In the semilogarithmic plots, one can see that the standard deviation is always in the order
of the (relative) discretization error itself.

5.5. Speed-up

The speed-up was calculated serially using MATLAB on a Mac laptop; the standard routine eigs, which is
based on ARPACK [22], was used for solving the eigenvalue problems. We used linear finite elements for the
discretization space V . With our greedy method as introduced above, a significant speed-up in the computation
of eigenvalues can be achieved, as is shown for the settings of K = 2 to K = 7 eigenvalues in Table 1. Here, the
calculation of the detailed solutions takes in the range of 3.5 to 3.6 seconds, while the calculation of the reduced
solution is possible in 0.021 to 0.078 seconds, resulting in a speed-up of 140 to 43. The higher the value of N ,
the longer the reconstruction time, but in this case the increase is approximately linear in N .

Moreover, it should be noted that the more accurately the detailed solution is calculated, the more expensive
the detailed calculation becomes while the cost for the calculation of the reduced basis solution will stay in
the same range, such that we would achieve even higher speed-ups. In computations of practical relevance, the
detailed and the reduced accuracies have to be adjusted as it is described in [44]. Here we are mostly interested
in the performance of the RB algorithm, and thus we work with a fixed moderate finite element resolution of
15402 DOFs.

As can be seen in Table 2, the computation times for the error estimators (η) as well as for the required
offline components for the error estimators, i.e., solution of (3.12) and (3.13) (“Assembly”) and computation
of Â, increase for increasing values of N . In the case of Â, the increase is approximately linear. Note that
these longer computations will only have to be performed in the offline phase and will not have any impact
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Table 1. Timings for the detailed solution and the online calculations (reduced solution includ-
ing error estimation; reconstruction of the finite element solution from the reduced solution) in
seconds and speed-up numbers.

K 2 4 7
N 50 100 150 200 50 100 150 200 50 100 150 200

Detailed solution 3.5 3.5 3.6
Reduced solution 0.025 0.028 – – 0.037 0.043 0.050 0.055 0.057 0.067 0.075 0.082
Reconstruction 0.009 0.011 – – 0.009 0.012 0.016 0.019 0.010 0.013 0.018 0.021

Speed-up 140 125 – – 94 81 70 63 63 53 48 43

Table 2. Timings for single components of the offline phase in seconds.

N η Â Assembly
50 0.0028 1.3672 6.076
100 0.0037 2.7640 6.156
150 0.0040 4.1144 6.272
200 0.0046 5.5995 6.312

on the computation times for the online phase. The computation of g(μ) as defined in (5.1), which is necessary
for the error estimator, takes 0.0042 s.

5.6. Wall-slab configuration

In this section, we show the ability of the newly developed reduced basis method to approximate multiple
eigenvalues in a two-dimensional wall-slab configuration with a thin elastomer layer in between. The domain
shape is an L-shape with three non-overlapping subdomains representing the wall, the elastomer and the slab,
denoted by Ω1, Ω2 and Ω3, respectively. The corresponding domains are chosen as Ω1 = [0, 1]× [0, 2.8], Ω2 =
[0, 1]× [2.8, 3] and Ω3 = [0, 3]× [3, 4]. We again used standard linear finite elements with 30702 DOFs for these
calculations.

The material parameters E and ν will again range from 10−100 and 0.1−0.4. Since we aim for large numbers
of eigenvalues, we perform our simulations for K = 20. Figure 10 shows that we do not only obtain very good
convergence for the eigenvalues (left) but also for the corresponding eigenfunctions (right). The error curves
chosen to be represented in Figure 10 are representative examples for the eigenvalue and eigenfunction errors
in the wall-slab configuration, while the black lines denote the minimum and the maximum of the averaged
errors over the μ ∈ Ξtest, respectively.

The speed-up is similar to the one analyzed in detail in Section 5.5. For the wall-slab configuration, we show
in Table 3 the computation times in the case of K = 20 eigenvalues. As can be seen the computation of the
detailed solution takes 14.03 seconds, while the computations of the reduced solutions take between 0.14 and
0.24 seconds, depending on the basis size N . This results in a speed-up of 100 for N = 50 to 58 if we take
N = 300 for an accuracy of 10−7.

5.7. Three-dimensional example: First floor building

Since we aim to apply our results to the modal analysis for vibro-accoustics of laminated timber structures, as
they occur in modern timber buildings, we test the performance of our method on a three-dimensional geometry
representing the first floor of a building. Although wooden structures consist of orthotropic materials, we will
use isotropic material parameters for the ease of computation.

Usually different materials are used in the construction of a building. In this case, we have three different
materials for the walls. More precisely, we assume that the outer walls are subdomain one, which consists of one
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Figure 10. Wall-slab configuration with thin elastomer: RB error of eigenvalues (left) and
eigenfunctions (right).

Table 3. Timings for the detailed solution and the online calculations (reduced solution includ-
ing error estimation; reconstruction of the finite element solution from the reduced solution)
for a slab-wall configuration in seconds.

K 20
N 50 100 150 200 250 300

Detailed solution 14.03
Reduced solution 0.14 0.16 0.18 0.19 0.22 0.24
Reconstruction 0.027 0.035 0.041 0.049 0.054 0.065

Speed-up 100 87 78 73 63 58

Figure 11. Geometry and subdomains: outer walls in red, inner walls load-bearing in green,
inner ordinary walls in blue.

material and that the interior walls can be divided into two more subdomains, namely ordinary walls and load-
bearing walls. Figure 11 depicts our geometry and the corresponding domains. The material parameters E and
ν range from 100−1000 and 0.1−0.4. We perform our simulations for K = 10 and use standard finite elements
with 20 994 degrees of freedom.

The first row in Figure 12 represents the first eigenfunctions for three different parameter sets while
the second row represents the corresponding fourth eigenfunctions. We used the parameter sets μ1 =
(200, 0.1, 800, 0.3, 400, 0.2), μ2 = (650, 0.36, 150, 0.25, 900, 0.11) and μ3 = (800, 0.3, 500, 0.1, 200, 0.4). It can be
observed that the eigenfunctions change significantly depending on the parameters while still being approxi-
mated very well by our method. Figure 13 shows the error decay for the kth eigenvalues (left) and eigenfunctions
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Figure 12. Behaviour of the eigenfunctions depending on parameter variations. Top row de-
picts the first eigenfunction and bottom row the fourth eigenfunction.

50 100 150 200 250

10-4

10-3

10-2
max
min
EV1
EV3
EV5
EV7
EV9

50 100 150 200 250
10-4

10-3

10-2

10-1 max
min
EF1
EF3
EF5
EF7
EF9

Figure 13. First floor configuration: RB error of eigenvalues (left) and eigenfunctions (right).

Table 4. Timings for the detailed solution and the online calculations for the first floor in seconds.

K 10
N 50 100 150 200 250 300

Detailed solution 31.59
Reduced solution 0.084 0.096 0.102 0.111 0.125 0.142
Reconstruction 0.021 0.027 0.031 0.035 0.040 0.046

Speed-up 376 329 309 284 252 222

(right), k ∈ {1, 3, 5, 7, 9}, as well as the minimum and maximum averaged errors. We again obtain very good
convergence.

The speed-up in the three-dimensional setting is even more significant. For the first floor of the building,
we show in Table 4 the computation times for K = 10 eigenvalues. We observe that the computation of the
detailed solution takes 31.59 seconds, while the computations of the reduced solutions take between 0.084
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and 0.142 seconds, depending on the basis size N . This results in a speed-up of 376 for N = 50 to 222 if we
take N = 300 for an accuracy of 10−5.

6. Conclusion

In this paper, we have developed a model reduction framework for parameterized elliptic eigenvalue problems
and applied it numerically to linear elasticity. We have derived an asymptotically reliable error estimator for
eigenvalues, even for higher multiplicities, that also facilitates an online-offline decomposition. Several eigen-
values have been approximated simultaneously by a single reduced space for the variational approximation
of the eigenvalue problem. Altogether we achieve very effective tailored greedy strategies for the construction
of efficient reduced basis spaces for the simultaneous approximation of many eigenvalues.
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