115 research outputs found

    p21-Activated Kinase 1 (Pak1) Phosphorylates BAD Directly at Serine 111 In Vitro and Indirectly through Raf-1 at Serine 112

    Get PDF
    Cell survival depends on the balance between protective and apoptotic signals. When the balance of signals tips towards apoptosis, cells undergo programmed cell death. This balance has profound implications in diseases including cancer. Oncogenes and tumor suppressors are mutated to promote cell survival during tumor development, and many chemotherapeutic drugs kill tumor cells by stimulating apoptosis. BAD is a pro-apoptotic member of the Bcl-2 family of proteins, which can be phosphorylated on numerous sites to modulate binding to Bcl-2 and 14-3-3 proteins and inhibit its pro-apoptotic activities. One of the critical phosphorylation sites is the serine 112 (S112), which can be phosphorylated by several kinases including Pak1.We mapped the Pak phosphorylation sites by making serine to alanine mutations in BAD and testing them as substrates in in vitro kinase assays. We found that the primary phosphorylation site is not S112 but serine 111 (S111), a site that is sometimes found phosphorylated in vivo. In transfection assays of HEK293T cells, we showed that Pak1 required Raf-1 to stimulate phosphorylation on S112. Mutating either S111 or S112 to alanine enhanced binding to Bcl-2, but the double mutant S111/112A bound better to Bcl-2. Moreover, BAD phosphorylation at S111 was observed in several other cell lines, and treating one of them with the Pak1 inhibitor 2,2'-Dihydroxy-1,1'-dinaphthyldisulfide (IPA-3) reduced phosphorylation primarily at S112 and to a smaller extent at S111, while Raf inhibitors only reduced phosphorylation at S112.Together, these findings demonstrate that Pak1 phosphorylates BAD directly at S111, but phosphorylated S112 through Raf-1. These two sites of BAD serve as redundant regulatory sites for Bcl-2 binding

    Genome-Wide Location Analysis Reveals Distinct Transcriptional Circuitry by Paralogous Regulators Foxa1 and Foxa2

    Get PDF
    Gene duplication is a powerful driver of evolution. Newly duplicated genes acquire new roles that are relevant to fitness, or they will be lost over time. A potential path to functional relevance is mutation of the coding sequence leading to the acquisition of novel biochemical properties, as analyzed here for the highly homologous paralogs Foxa1 and Foxa2 transcriptional regulators. We determine by genome-wide location analysis (ChIP-Seq) that, although Foxa1 and Foxa2 share a large fraction of binding sites in the liver, each protein also occupies distinct regulatory elements in vivo. Foxa1-only sites are enriched for p53 binding sites and are frequently found near genes important to cell cycle regulation, while Foxa2-restricted sites show only a limited match to the forkhead consensus and are found in genes involved in steroid and lipid metabolism. Thus, Foxa1 and Foxa2, while redundant during development, have evolved divergent roles in the adult liver, ensuring the maintenance of both genes during evolution.Institute for Diabetes, Obesity and Metabolism. Diabetes Research Center (Functional Genomics Core P30-DK19525

    Intracellular Calcium Deficits in Drosophila Cholinergic Neurons Expressing Wild Type or FAD-Mutant Presenilin

    Get PDF
    Much of our current understanding about neurodegenerative diseases can be attributed to the study of inherited forms of these disorders. For example, mutations in the presenilin 1 and 2 genes have been linked to early onset familial forms of Alzheimer's disease (FAD). Using the Drosophila central nervous system as a model we have investigated the role of presenilin in one of the earliest cellular defects associated with Alzheimer's disease, intracellular calcium deregulation. We show that expression of either wild type or FAD-mutant presenilin in Drosophila CNS neurons has no impact on resting calcium levels but does give rise to deficits in intracellular calcium stores. Furthermore, we show that a loss-of-function mutation in calmodulin, a key regulator of intracellular calcium, can suppress presenilin-induced deficits in calcium stores. Our data support a model whereby presenilin plays a role in regulating intracellular calcium stores and demonstrate that Drosophila can be used to study the link between presenilin and calcium deregulation

    The expression of monocarboxylate transporters in thyroid carcinoma can be associated with the morphological features of BRAF (V600E) mutation

    Get PDF
    BRAF (V600E) mutation, usually performed by DNA techniques, is one of the most common diagnostic markers in papillary thyroid carcinoma. Few papers have demonstrated that plump cells (eosinophilic cytoplasms and papillary thyroid carcinoma nuclei) and peculiar sickle-shaped nuclei represent morphological features of BRAF (V600E) on papillary thyroid carcinomas. These features seem to be linked to glycolytic phenotype whereby monocarboxylate transporters 1-4 are hypothesized to have a dominant role as lactate transporters. We investigated the association between these morphological features and monocarboxylate transporters 1 and 4 in 48 cyto-histological samples diagnosed as "positive for malignancy-favoring papillary thyroid carcinoma". These cases were processed with liquid-based cytology and underwent BRAF (V600E) mutational analysis (pyrosequencing) on liquid-based cytology and monocarboxylate transporters immunostaining on histology. The expression of monocarboxylate transporter 1, monocarboxylate transporter 4, glucose trasporter-1 and carbonic anhidrase were scored semi-quantitatively with expression from 0 to 3+ (strong positivity). The 33 mutated and 15 wild type cases showed 100 % cyto-histological concordance. The cytological evaluation revealed plump cells and sickle nuclear shape in 100 % mutated cases. Monocarboxylate transporter 1 yielded 76 % positivity in the mutated cases especially in both the plump cells and sickle-shaped nuclei, whereas the wild types showed 13.3 % positive monocarboxylate transporter 1 (p = 0.00013). Monocarboxylate transporter 4 resulted in 100 % positivity in mutated and 40 % in wild types (p 0.05). This is the first report analyzing the association between monocarboxylate transporter expression and the morphological features of BRAF (V600E) mutated papillary thyroid carcinomas suggesting the possible involvement of lactate in the morphological features.info:eu-repo/semantics/publishedVersio

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Methanogens, sulphate and heavy metals: a complex system

    Get PDF
    Anaerobic digestion (AD) is a well-established technology used for the treatment of wastes and wastewaters with high organic content. During AD organic matter is converted stepwise to methane-containing biogasa renewable energy carrier. Methane production occurs in the last AD step and relies on methanogens, which are rather sensitive to some contaminants commonly found in wastewaters (e.g. heavy metals), or easily outcompeted by other groups of microorganisms (e.g. sulphate reducing bacteria, SRB). This review gives an overview of previous research and pilot-scale studies that shed some light on the effects of sulphate and heavy metals on methanogenesis. Despite the numerous studies on this subject, comparison is not always possible due to differences in the experimental conditions used and parameters explained. An overview of the possible benefits of methanogens and SRB co-habitation is also covered. Small amounts of sulphide produced by SRB can precipitate with metals, neutralising the negative effects of sulphide accumulation and free heavy metals on methanogenesis. Knowledge on how to untangle and balance sulphate reduction and methanogenesis is crucial to take advantage of the potential for the utilisation of biogenic sulphide as a metal detoxification agent with minimal loss in methane production in anaerobic digesters.The research was financially supported by the People Program (Marie Curie Actions) of the European Union's Seventh Framework Programme FP7/2007-2013 under REA agreement 289193

    Identification and Characterization of an Unusual Class I Myosin Involved in Vesicle Traffic in Trypanosoma brucei

    Get PDF
    Myosins are a multimember family of motor proteins with diverse functions in eukaryotic cells. African trypanosomes possess only two candidate myosins and thus represent a useful system for functional analysis of these motors. One of these candidates is an unusual class I myosin (TbMyo1) that is expressed at similar levels but organized differently during the life cycle of Trypanosoma brucei. This myosin localizes to the polarized endocytic pathway in bloodstream forms of the parasite. This organization is actin dependent. Knock down of TbMyo1 results in a significant reduction in endocytic activity, a cessation in cell division and eventually cell death. A striking morphological feature in these cells is an enlargement of the flagellar pocket, which is consistent with an imbalance in traffic to and from the surface. In contrast TbMyo1 is distributed throughout procyclic forms of the tsetse vector and a loss of ∼90% of the protein has no obvious effects on growth or morphology. These results reveal a life cycle stage specific requirement for this myosin in essential endocytic traffic and represent the first description of the involvement of a motor protein in vesicle traffic in these parasites

    Genome-Wide Progesterone Receptor Binding: Cell Type-Specific and Shared Mechanisms in T47D Breast Cancer Cells and Primary Leiomyoma Cells

    Get PDF
    Progesterone, via its nuclear receptor (PR), exerts an overall tumorigenic effect on both uterine fibroid (leiomyoma) and breast cancer tissues, whereas the antiprogestin RU486 inhibits growth of these tissues through an unknown mechanism. Here, we determined the interaction between common or cell-specific genome-wide binding sites of PR and mRNA expression in RU486-treated uterine leiomyoma and breast cancer cells.ChIP-sequencing revealed 31,457 and 7,034 PR-binding sites in breast cancer and uterine leiomyoma cells, respectively; 1,035 sites overlapped in both cell types. Based on the chromatin-PR interaction in both cell types, we statistically refined the consensus progesterone response element to G•ACA• • •TGT•C. We identified two striking differences between uterine leiomyoma and breast cancer cells. First, the cis-regulatory elements for HSF, TEF-1, and C/EBPα and β were statistically enriched at genomic RU486/PR-targets in uterine leiomyoma, whereas E2F, FOXO1, FOXA1, and FOXF sites were preferentially enriched in breast cancer cells. Second, 51.5% of RU486-regulated genes in breast cancer cells but only 6.6% of RU486-regulated genes in uterine leiomyoma cells contained a PR-binding site within 5 kb from their transcription start sites (TSSs), whereas 75.4% of RU486-regulated genes contained a PR-binding site farther than 50 kb from their TSSs in uterine leiomyoma cells. RU486 regulated only seven mRNAs in both cell types. Among these, adipophilin (PLIN2), a pro-differentiation gene, was induced via RU486 and PR via the same regulatory region in both cell types.Our studies have identified molecular components in a RU486/PR-controlled gene network involved in the regulation of cell growth, cell migration, and extracellular matrix function. Tissue-specific and common patterns of genome-wide PR binding and gene regulation may determine the therapeutic effects of antiprogestins in uterine fibroids and breast cancer

    Abstracts from the 3rd Conference on Aneuploidy and Cancer: Clinical and Experimental Aspects

    Get PDF
    corecore