423 research outputs found
Étude expérimentale et théorique de la production de nuclides légers rapides dans les interactions proton-noyau à haute énergie
Nous donnons la description d'une expérience réalisée au CERN et concernant la production de 1H, 2H, 3H, 3He, 4He lors des interactions proton-noyau (12C, 27Al, 197Au) à des angles variés (30°, 45°, 75°, 105°). Nous présentons également une théorie thermodynamique permettant d'interpréter les résultats expérimentaux obtenus
A concurrent ultra-fractionated radiation therapy and temozolomide treatment; a promising therapy for newly diagnosed, inoperable glioblastoma
International audienceWe report on a phase II clinical trial to determine the effect of a concurrent ultra-fractionated radiotherapy and temozolomide treatment in inoperable glioblastoma patients. A phase II study opened; patients over 18 years of age who were able to give informed consent and had histologically proven, newly diagnosed inoperable diagnosed and supratentorial glioblastoma were eligible. Three doses of 0.75 Gy spaced apart by at least four hours were delivered daily, five days a week for six consecutive weeks for a total of 67.5Gy. Chemotherapy was administered during the same period, which consisted of temozolomide given at a dose of 75 mg/m2, for seven days a week. After a four-week break, chemotherapy was resumed for up to six cycles of adjuvant temozolomide treatment, given every 28 days, according to the standard five-day regimen. Tolerance and toxicity were the primary endpoints; survival and progression-free survival were the secondary endpoints. In total 40 patients were enrolled in this study, 31 men and 9 women. The median age was 58 years, and the median Karnofsky performance status was 80. The concomitant ultra fractionated radiotherapy and temozolomide treatment was well tolerated. Complete responses were seen in four patients, and partial responses were reported in seven patients. The median survival from the initial diagnosis was 16 months. Several long-term survivors were noted. Concurrent ultra-fractionated radiation therapy and temozolomide treatment is well accepted by the patients. The results showed encouraging survival rates for these unfavorable patients
The DNA methylome of DDR genes and benefit from RT or TMZ in IDH mutant low-grade glioma treated in EORTC 22033.
The optimal treatment for patients with low-grade glioma (LGG) WHO grade II remains controversial. Overall survival ranges from 2 to over 15 years depending on molecular and clinical factors. Hence, risk-adjusted treatments are required for optimizing outcome and quality of life. We aim at identifying mechanisms and associated molecular markers predictive for benefit from radiotherapy (RT) or temozolomide (TMZ) in LGG patients treated in the randomized phase III trial EORTC 22033. As candidate biomarkers for these genotoxic treatments, we considered the DNA methylome of 410 DNA damage response (DDR) genes. We first identified 62 functionally relevant CpG sites located in the promoters of 24 DDR genes, using the LGG data from The Cancer Genome Atlas. Then we tested their association with outcome [progression-free survival (PFS)] depending on treatment in 120 LGG patients of EORTC 22033, whose tumors were mutant for isocitrate dehydrogenase 1 or 2 (IDHmt), the molecular hallmark of LGG. The results suggested that seven CpGs of four DDR genes may be predictive for longer PFS in one of the treatment arms that comprised MGMT, MLH3, RAD21, and SMC4. Most interestingly, the two CpGs identified for MGMT are the same, previously selected for the MGMT-STP27 score that is used to determine the methylation status of the MGMT gene. This score was higher in the LGG with 1p/19q codeletion, in this and other independent LGG datasets. It was predictive for PFS in the TMZ, but not in the RT arm of EORTC 22033. The results support the hypothesis that a high score predicts benefit from TMZ treatment for patients with IDHmt LGG, regardless of the 1p/19q status. This MGMT methylation score may identify patients who benefit from first-line treatment with TMZ, to defer RT for long-term preservation of cognitive function and quality of life
Early detection of human glioma sphere xenografts in mouse brain using diffusion MRI at 14.1 T.
Glioma models have provided important insights into human brain cancers. Among the investigative tools, MRI has allowed their characterization and diagnosis. In this study, we investigated whether diffusion MRI might be a useful technique for early detection and characterization of slow-growing and diffuse infiltrative gliomas, such as the proposed new models, LN-2669GS and LN-2540GS glioma sphere xenografts. Tumours grown in these models are not visible in conventional T2 -weighted or contrast-enhanced T1 -weighted MRI at 14.1 T. Diffusion-weighted imaging and diffusion tensor imaging protocols were optimized for contrast by exploring long diffusion times sensitive for probing the microstructural alterations induced in the normal brain by the slow infiltration of glioma sphere cells. Compared with T2 -weighted images, tumours were properly identified in their early stage of growth using diffusion MRI, and confirmed by localized proton MR spectroscopy as well as immunohistochemistry. The first evidence of tumour presence was revealed for both glioma sphere xenograft models three months after tumour implantation, while no necrosis, oedema or haemorrhage were detected either by MRI or by histology. Moreover, different values of diffusion indices, such as mean diffusivity and fractional anisotropy, were obtained in tumours grown from LN-2669GS and LN-2540GS glioma sphere lines. These observations highlighted diverse tumour microstructures for both xenograft models, which were reflected in histology. This study demonstrates the ability of diffusion MRI techniques to identify and investigate early stages of slow-growing, invasive tumours in the mouse brain, thus providing a potential imaging biomarker for early detection of tumours in humans
Temozolomide chemotherapy versus radiotherapy in high-risk low-grade glioma (EORTC 22033-26033): a randomised, open-label, phase 3 intergroup study.
BACKGROUND: Outcome of low-grade glioma (WHO grade II) is highly variable, reflecting molecular heterogeneity of the disease. We compared two different, single-modality treatment strategies of standard radiotherapy versus primary temozolomide chemotherapy in patients with low-grade glioma, and assessed progression-free survival outcomes and identified predictive molecular factors.
METHODS: For this randomised, open-label, phase 3 intergroup study (EORTC 22033-26033), undertaken in 78 clinical centres in 19 countries, we included patients aged 18 years or older who had a low-grade (WHO grade II) glioma (astrocytoma, oligoastrocytoma, or oligodendroglioma) with at least one high-risk feature (aged >40 years, progressive disease, tumour size >5 cm, tumour crossing the midline, or neurological symptoms), and without known HIV infection, chronic hepatitis B or C virus infection, or any condition that could interfere with oral drug administration. Eligible patients were randomly assigned (1:1) to receive either conformal radiotherapy (up to 50·4 Gy; 28 doses of 1·8 Gy once daily, 5 days per week for up to 6·5 weeks) or dose-dense oral temozolomide (75 mg/m(2) once daily for 21 days, repeated every 28 days [one cycle], for a maximum of 12 cycles). Random treatment allocation was done online by a minimisation technique with prospective stratification by institution, 1p deletion (absent vs present vs undetermined), contrast enhancement (yes vs no), age (<40 vs ≥40 years), and WHO performance status (0 vs ≥1). Patients, treating physicians, and researchers were aware of the assigned intervention. A planned analysis was done after 216 progression events occurred. Our primary clinical endpoint was progression-free survival, analysed by intention-to-treat; secondary outcomes were overall survival, adverse events, neurocognitive function (will be reported separately), health-related quality of life and neurological function (reported separately), and correlative analyses of progression-free survival by molecular markers (1p/19q co-deletion, MGMT promoter methylation status, and IDH1/IDH2 mutations). This trial is closed to accrual but continuing for follow-up, and is registered at the European Trials Registry, EudraCT 2004-002714-11, and at ClinicalTrials.gov, NCT00182819.
FINDINGS: Between Sept 23, 2005, and March 26, 2010, 707 patients were registered for the study. Between Dec 6, 2005, and Dec 21, 2012, we randomly assigned 477 patients to receive either radiotherapy (n=240) or temozolomide chemotherapy (n=237). At a median follow-up of 48 months (IQR 31-56), median progression-free survival was 39 months (95% CI 35-44) in the temozolomide group and 46 months (40-56) in the radiotherapy group (unadjusted hazard ratio [HR] 1·16, 95% CI 0·9-1·5, p=0·22). Median overall survival has not been reached. Exploratory analyses in 318 molecularly-defined patients confirmed the significantly different prognosis for progression-free survival in the three recently defined molecular low-grade glioma subgroups (IDHmt, with or without 1p/19q co-deletion [IDHmt/codel], or IDH wild type [IDHwt]; p=0·013). Patients with IDHmt/non-codel tumours treated with radiotherapy had a longer progression-free survival than those treated with temozolomide (HR 1·86 [95% CI 1·21-2·87], log-rank p=0·0043), whereas there were no significant treatment-dependent differences in progression-free survival for patients with IDHmt/codel and IDHwt tumours. Grade 3-4 haematological adverse events occurred in 32 (14%) of 236 patients treated with temozolomide and in one (<1%) of 228 patients treated with radiotherapy, and grade 3-4 infections occurred in eight (3%) of 236 patients treated with temozolomide and in two (1%) of 228 patients treated with radiotherapy. Moderate to severe fatigue was recorded in eight (3%) patients in the radiotherapy group (grade 2) and 16 (7%) in the temozolomide group. 119 (25%) of all 477 patients had died at database lock. Four patients died due to treatment-related causes: two in the temozolomide group and two in the radiotherapy group.
INTERPRETATION: Overall, there was no significant difference in progression-free survival in patients with low-grade glioma when treated with either radiotherapy alone or temozolomide chemotherapy alone. Further data maturation is needed for overall survival analyses and evaluation of the full predictive effects of different molecular subtypes for future individualised treatment choices.
FUNDING: Merck Sharpe & Dohme-Merck & Co, Canadian Cancer Society, Swiss Cancer League, UK National Institutes of Health, Australian National Health and Medical Research Council, US National Cancer Institute, European Organisation for Research and Treatment of Cancer Cancer Research Fund
Les vertébrés terrestres présents sur la commune de Marseille et leur statut réglementaire.
De nombreux animaux «sauvages» cohabitent avec l'homme en zone urbaine, la qualité des sites naturels marseillais permet à certaines espèces remarquables de vivre aux portes de la ville
Diffusion and perfusion weighted magnetic resonance imaging for tumor volume definition in radiotherapy of brain tumors
Abstract
Accurate target volume delineation is crucial for the radiotherapy of tumors. Diffusion and perfusion magnetic resonance imaging (MRI) can provide functional information about brain tumors, and they are able to detect tumor volume and physiological changes beyond the lesions shown on conventional MRI. This review examines recent studies that utilized diffusion and perfusion MRI for tumor volume definition in radiotherapy of brain tumors, and it presents the opportunities and challenges in the integration of multimodal functional MRI into clinical practice. The results indicate that specialized and robust post-processing algorithms and tools are needed for the precise alignment of targets on the images, and comprehensive validations with more clinical data are important for the improvement of the correlation between histopathologic results and MRI parameter images
Radiomics in neuro-oncological clinical trials
The development of clinical trials has led to substantial improvements in the prevention and treatment of many diseases, including brain cancer. Advances in medicine, such as improved surgical techniques, the development of new drugs and devices, the use of statistical methods in research, and the development of codes of ethics, have considerably influenced the way clinical trials are conducted today. In addition, methods from the broad field of artificial intelligence, such as radiomics, have the potential to considerably affect clinical trials and clinical practice in the future. Radiomics is a method to extract undiscovered features from routinely acquired imaging data that can neither be captured by means of human perception nor conventional image analysis. In patients with brain cancer, radiomics has shown its potential for the non-invasive identification of prognostic biomarkers, automated response assessment, and differentiation between treatment-related changes from tumour progression. Despite promising results, radiomics is not yet established in routine clinical practice nor in clinical trials. In this Viewpoint, the European Organization for Research and Treatment of Cancer Brain Tumour Group summarises the current status of radiomics, discusses its potential and limitations, envisions its future role in clinical trials in neuro-oncology, and provides guidance on how to address the challenges in radiomics
A case report of pseudoprogression followed by complete remission after proton-beam irradiation for a low-grade glioma in a teenager: the value of dynamic contrast-enhanced MRI
A fourteen years-old boy was treated post-operatively with proton therapy for a recurrent low-grade oligodendroglioma located in the tectal region. Six months after the end of irradiation (RT), a new enhancing lesion appeared within the radiation fields. To differentiate disease progression from radiation-induced changes, dynamic susceptibility contrast-enhanced (DSCE) MRI was used with a T2* sequence to study perfusion and permeability characteristics simultaneously. Typically, the lesion showed hypoperfusion and hyperpermeability compared to the controlateral normal brain. Without additional treatment but a short course of steroids, the image disappeared over a six months period allowing us to conclude for a pseudo-progression. The patient is alive in complete remission more than 2 years post-RT
Hypofractionated stereotactic re-irradiation: treatment option in recurrent malignant glioma
BACKGROUND: Hypofractionated stereotactic radiotherapy (HFSRT) is one salvage treatment option in previously irradiated patients with recurrent malignant glioma. We analyzed the results of HFSRT and prognostic factors in a single-institution series. METHODS: Between 1997 and 2003, 19 patients with recurrent malignant glioma (14 glioblastoma on most recent histology, 5 anaplastic astrocytoma) were treated with HFSRT. The median interval from post-operative radiotherapy to HFSRT was 19 (range 3–116) months, the median daily single dose 5 (4–10) Gy, the median total dose 30 (20–30) Gy and the median planning target volume 15 (4–70) ml. RESULTS: The median overall survival (OS) was 9.3 (1.9-77.6+) months from the time of HFSRT, 15.4 months for grade III and 7.9 months for grade IV tumors (p = 0.029, log-rank test). Two patients were alive at 34.6 and 77.6 months. OS was longer after a total dose of 30 Gy (11.1 months) than after total doses of <30 Gy (7.4 months; p = 0.051). Of five (26%) reoperations, none was performed for presumed or histologically predominant radiation necrosis. Median time to tumor progression after HFSRT on imaging was 4.9 months (1.3 to 37.3) months. CONCLUSION: HFSRT with conservative total doses of no more than 30 Gy is safe and leads to similar OS times as more aggressive treatment schemes. In individual patients, HFSRT in combination with other salvage treatment modalities, was associated with long-term survival
- …
