107 research outputs found

    Gd(III) complexes intercalated into hydroxy double salts as potential MRI contrast agents

    Get PDF
    The ion exchange intercalation of two Gd-based magnetic resonance imaging contrast agents into hydroxy double salts (HDSs) is reported. The presence of Gd3+ diethylenetriaminepentaacetate and Gd3+ diethylenetriaminepenta(methylenephosphonate) complexes in the HDS lattice after intercalation was confirmed by microwave plasma-atomic emission spectroscopy. The structural aspects of the HDS-Gd composites were studied by X-ray diffraction, with the intercalates having an interlayer spacing of 14.5–18.6 Å. Infrared spectroscopy confirmed the presence of characteristic vibration peaks associated with the Gd3+ complexes in the intercalation compounds. The proton relaxivities of the Gd3+ complex-loaded composites were 2 to 5-fold higher in longitudinal relaxivity, and up to 10-fold higher in transverse relaxivity, compared to solutions of the pure complexes. These data demonstrate that the new composites reported here are potentially potent MRI contrast agents

    Using ICP-OES and SEM-EDX in biosorption studies

    Get PDF
    We have compared the analytical results obtained by inductively coupled plasma optical emission spectroscopy (ICP-OES) and by scanning electron microscopy with an energy dispersive X-ray analytical system (SEM-EDX) in order to explore the mechanism of metal ions biosorption by biomass using two independent methods. The marine macroalga Enteromorpha sp. was enriched with Cu(II), Mn(II), Zn(II), and Co(II) ions via biosorption, and the biosorption capacity of alga determined from the solution and biomass composition before and after biosorption process was compared. The first technique was used to analyze the composition of the natural and metal-loaded biomass, and additionally the composition of the solution before and after biosorption. The second technique was used to obtain a picture of the surface of natural and metal ion-loaded macroalgae, to map the elements on the cell wall of dry biomass, and to determine their concentration before and after biosorption. ICP-OES showed a better precision and lower detection limit than EDX, but SEM-EDX gave more information regarding the sample composition of Enteromorpha sp. Both techniques confirmed that biosorption is a surface phenomenon, in which alkali and alkaline earth metal ions were exchanged by metal ions from aqueous solution

    Characterisation of the Physical Composition and Microbial Community Structure of Biofilms within a Model Full-Scale Drinking Water Distribution System

    Get PDF
    Within drinking water distribution systems (DWDS), microorganisms form multi-species biofilms on internal pipe surfaces. A matrix of extracellular polymeric substances (EPS) is produced by the attached community and provides structure and stability for the biofilm. If the EPS adhesive strength deteriorates or is overcome by external shear forces, biofilm ismobilised into the water potentially leading to degradation of water quality. However, little is known about the EPS within DWDS biofilms or how this is influenced by community composition or environmental parameters, because of the complications in obtaining biofilm samples and the difficulties in analysing EPS. Additionally, although biofilms may contain various microbial groups, research commonly focuses solely upon bacteria. This research applies an EPS analysis method based upon fluorescent confocal laser scanning microscopy (CLSM) in combination with digital image analysis (DIA), to concurrently characterize cells and EPS (carbohydrates and proteins) within drinking water biofilms from a full-scale DWDS experimental pipe loop facility with representative hydraulic conditions. Application of the EPS analysismethod, alongside DNA fingerprinting of bacterial, archaeal and fungal communities, was demonstrated for biofilms sampled from different positions around the pipeline, after 28 days growth within the DWDS experimental facility. The volume of EPS was 4.9 times greater than that of the cells within biofilms, with carbohydrates present as the dominant component. Additionally, the greatest proportion of EPS was located above that of the cells. Fungi and archaea were established as important components of the biofilm community, although bacteria were more diverse.Moreover, biofilms from different positions were similar with respect to community structure and the quantity, composition and three-dimensional distribution of cells and EPS, indicating that active colonisation of the pipe wall is an important driver inmaterial accumulation within the DWDS

    Cultural Diversity and Saccade Similarities: Culture Does Not Explain Saccade Latency Differences between Chinese and Caucasian Participants

    Get PDF
    A central claim of cultural neuroscience is that the culture to which an individual belongs plays a key role in shaping basic cognitive processes and behaviours, including eye movement behaviour. We previously reported a robust difference in saccade behaviour between Chinese and Caucasian participants; Chinese participants are much more likely to execute low latency express saccades, in circumstances in which these are normally discouraged. To assess the extent to which this is the product of culture we compared a group of 70 Chinese overseas students (whose primary cultural exposure was that of mainland China), a group of 45 participants whose parents were Chinese but who themselves were brought up in the UK (whose primary cultural exposure was western European) and a group of 70 Caucasian participants. Results from the Schwartz Value Survey confirmed that the UK-Chinese group were culturally similar to the Caucasian group. However, their patterns of saccade latency were identical to the mainland Chinese group, and different to the Caucasian group. We conclude that at least for the relatively simple reflexive saccade behaviour we have investigated, culture cannot explain the observed differences in behaviour

    Methodological approaches for studying the microbial ecology of drinking water distribution systems

    Get PDF
    The study of the microbial ecology of drinking water distribution systems (DWDS) has traditionally been based on culturing organisms from bulk water samples. The development and application of molecular methods has supplied new tools for examining the microbial diversity and activity of environmental samples, yielding new insights into the microbial community and its diversity within these engineered ecosystems. In this review, the currently available methods and emerging approaches for characterising microbial communities, including both planktonic and biofilm ways of life, are critically evaluated. The study of biofilms is considered particularly important as it plays a critical role in the processes and interactions occurring at the pipe wall and bulk water interface. The advantages, limitations and usefulness of methods that can be used to detect and assess microbial abundance, community composition and function are discussed in a DWDS context. This review will assist hydraulic engineers and microbial ecologists in choosing the most appropriate tools to assess drinking water microbiology and related aspects

    Harmful Elements in Estuarine and Coastal Systems

    Get PDF
    Estuaries and coastal zones are dynamic transitional systems which provide many economic and ecological benefits to humans, but also are an ideal habitat for other organisms as well. These areas are becoming contaminated by various anthropogenic activities due to a quick economic growth and urbanization. This chapter explores the sources, chemical speciation, sediment accumulation and removal mechanisms of the harmful elements in estuarine and coastal seawaters. It also describes the effects of toxic elements on aquatic flora and fauna. Finally, the toxic element pollution of the Venice Lagoon, a transitional water body located in the northeastern part of Italy, is discussed as a case study, by presenting the procedures adopted to measure the extent of the pollution, the impacts on organisms and the restoration activities

    Diskussionsbeiträge

    No full text

    Electrolytic hydride generation (EC-HG) - a sample introduction system with some special features

    No full text
    Fundamental aspects of electrolytic hydride generation (EC-HG) and the application of EC-HG as a sample introduction system in atomic spectrometry are presented. One of the aims of this review is to help the analyst to select the most suitable electrolytic hydride generator and diverse operating parameters, and especially the choice of the cathode material, in relation to the requirements of the analytical problem. The application of EC-HG in speciation analysis of hydride-forming elements is one of the topics of this review. Additionally, the use of EC-HG is critically evaluated as an alternative to wet chemical hydride generation
    corecore