577 research outputs found

    O proceso de incorporaciĂłn ĂĄ docenciaen galego

    Get PDF

    Europium(III) Macrocyclic Chelates Appended with Tyrosine-based Chromophores and Di-(2-picolyl)amine-based Receptors: Turn-On Luminescent Chemosensors Selective to Zinc(II) Ions

    Get PDF
    [Abstract] Zinc ions play an important role in many biological processes in the human body. To selectively detect ZnÂČâș, two EuDO3A‐based complexes (DO3A=1,4,7,10‐tetraazacyclododecane‐1,4,7‐tricarboxylic acid) appended with tyrosine as a chromophore and di‐(2‐picolyl)amine (DPA) as the ZnÂČâș recognition moiety were developed as suitable luminescent sensors. Their luminescence intensity is affected by the photoinduced electron transfer mechanism. Upon addition of ZnÂČâș, both probes display an up to sevenfold enhancement in EuÂłâș emission. Competition experiments demonstrated their specificity toward ZnÂČâș over other metal ions, while also revealing the nonspecificity of the derivatives lacking the DPA‐moiety, thus confirming the essential role of the DPA for the recognition of ZnÂČâș. The induced emission changes of EuÂłâș allow for precise quantitative analysis of ZnÂČâș, establishing these lanthanide‐based complexes as viable chemosensors for biological applications.German Research Foundation; AN 716/7-

    In-depth study of a novel class of ditopic gadolinium(III)-based MRI probes sensitive to zwitterionic neurotransmitters

    Get PDF
    [Abstract] The efficacy of Gd-based low-molecular weight ditopic MRI probes on binding zwitterionic neurotransmitters (ZNTs) relies on their structural compatibility. ZNTs are challenging biomarkers for monitoring chemical neurotransmission due to their intrinsic complexity as target molecules. In this work, we focus on tuning the cyclen- and azacrown ether-based binding sites properties to increase the affinity toward ZNTs. Our approach consisted in performing structural modifications on the binding sites in terms of charge and size, followed by the affinity evaluation through T1-weighted relaxometric titrations. We prepared and investigated six Gd3+ complexes with different structures and thus properties, which were found to be acetylcholine insensitive; moreover, two of them displayed considerably stronger affinity toward glutamate and glycine over hydrogencarbonate and other ZNTs. Complexes with small and non-charged or no substituents on the azacrown moiety displayed the highest affinities toward ZNTs, followed by strong decrease in longitudinal relaxivity r1 of around 70%. In contrast, hosts with negatively charged substituents exhibited lower decrease in r1 of nearly 30%. The thorough investigations involving relaxometric titrations, luminescence, and NMR diffusion experiments, as well as theoretical density functional theory calculations, revealed that the affinity of reported hosts toward ZNTs is greatly affected by the remote pendant on the azacrown derivative.German Research Foundation; AN 716/7-

    A combined NMR and DFT study of conformational dynamics in lanthanide complexes of macrocyclic DOTA-like ligands

    Get PDF
    [Abstract] The solution dynamics of the Eu(III) complexes of H4dota (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetracarboxylic acid) and H5do3ap (1,4,7,10-tetraazacyclododecane-4,7,10-tris(carboxymethyl)-1-methylphosphonic acid, bound in both monoprotonated and fully deprotonated forms) were investigated by using a combination of NMR measurements and DFT calculations. In solution, an equilibrium between the square antiprismatic (SAP) and twisted-square antiprismatic isomers (TSAP) of these complexes is present. These two isomers interconvert by rotation of the pendant arms or inversion of the cyclen chelate rings. 1D EXSY NMR spectra were used to determine these exchange rates with unprecedented accuracy. It was found that the two processes occur at different rates. Additional variable-temperature measurements allowed determination of the corresponding activation parameters for the two processes. DFT calculations were then used to obtain mechanistic information at the molecular level. The results show that the cyclen inversion pathway involves stepwise inversion of the four chelate rings formed upon metal ion coordination. However, the arm rotation process may operate through a synchronous rotation of the pendant arms or a stepwise mechanism depending on the system. A mixed cluster-continuum approach was required to improve the agreement between experimental and calculated activation parameters for the arm rotation process. The obtained results will aid the design of MRI contrast agents. Furthermore, the methodology developed in this work can be further applied for the investigation of other dynamic paramagnetic systems, e.g. peptides with Ln(III) probes or natively paramagnetic metalloproteins.Czech Science Foundation; 16-03156SCharles University; 1076016Czech Republic. Ministry of Education; LTC 170607Ministerio de EconomĂ­a y Competitividad; CTQ2013-43243-

    Investigations into the effects of linker length elongation on the behaviour of calcium-responsive MRI probes

    Get PDF
    [Abstract] Understanding the relationship between chemical structure and the effectiveness of bioresponsive magnetic resonance imaging (MRI) contrast agents can offer help to identify key components required for the future development of such probes. Here, we report the development and characterisation of two novel monomeric bifunctional chelators, L1 and L2, whose paramagnetic metal complexes can serve as calcium-responsive contrast agents. Specifically, relaxometric titrations, luminescence lifetime measurements, high resolution NMR and diffusion experiments, as well as density functional theory (DFT) calculations were carried out to assess the behaviour of each system. Minor structural differences between the probes resulted from the extension of the linker between the macrocyclic lanthanide chelator and the acyclic Ca-binding moiety. Relaxometric titrations of both systems, GdL1 and GdL2, showed an increase in r1 and r2 relaxivity upon Ca2+ addition, with the derivative bearing the longer linker showing a greater overall change. The hydration states of the europium analogues were assessed revealing a higher initial hydration state for EuL2. Diffusion ordered NMR spectroscopy revealed negligible changes in the diffusive properties of both systems upon the addition of Ca2+, while NMR studies of the Y3+, Yb3+ and Eu3+ analogues provided further insights into the structural behaviour of the linker unit in both the unsaturated and Ca-saturated states. DFT calculations supported the different coordination modes of the studied paramagnetic complexes in the presence and absence of Ca2+. Overall, our findings demonstrate the impact of subtle changes to the structure of such probes, affecting a range of properties and their coordination behaviour.German Research Foundation; AN 716/7-

    Epigenetic Characterization of CDKN1C in Placenta Samples from Non-syndromic Intrauterine Growth Restriction

    Get PDF
    The cyclin-dependent kinase (CDK)-inhibitor 1C (CDKN1C) gene is expressed from the maternal allele and is located within the centromeric imprinted domain at chromosome 11p15. It is a negative regulator of proliferation, with loss-of function mutations associated with the overgrowth disorder Beckwith-Wiedemann syndrome. Recently, gain-of-function mutations within the PCNA domain have been described in two disorders characterized by growth failure, namely IMAGe (intrauterine growth restriction, metaphyseal dysplasia, adrenal hypoplasia congenita and genital abnormalities) syndrome and Silver-Russell syndrome (SRS). Over-expression of CDKN1C by maternally inherited microduplications also results in SRS, suggesting that in addition to activating mutations this gene may regulate growth by changes in dosage. To determine if CDKN1C is involved in non-syndromic IUGR we compared the expression and DNA methylation levels in a large cohort of placental biopsies from IUGR and uneventful pregnancies. We observe higher levels of expression of CDKN1C in IUGR placentas compared to those of controls. All placenta biopsies heterozygous for the PAPA repeat sequence in exon 2 showed appropriate monoallelic expression and no mutations in the PCNA domain were observed. The expression profile was independent of both genetic or methylation variation in the minimal CDKN1C promoter interval and of methylation of the cis-acting maternally methylated region associated with the neighboring KCNQ1OT1 non-coding RNA. Chromatin immunoprecipitation revealed binding sites for CTCF within the unmethylated CDKN1C gene body CpG island and putative enhancer regions, associated with the canonical enhancer histone signature, H3K4me1 and H3K27ac, located 58 and 360 kb away. Using 3C-PCR we identify constitutive higher-order chromatin loops that occur between one of these putative enhancer regions and CDKN1C in human placenta tissues, which we propose facilitates expression

    17O and 1H relaxometric and DFT study of hyperfine coupling constants in [Mn(H2O)6]2+

    Get PDF
    [Abstract] Nuclear Magnetic Relaxation Dispersion (NMRD) profiles and 17O NMR chemical shifts and transverse relaxation rates of aqueous solutions of [Mn(H2O)6]2+ were recorded to determine the parameters governing the relaxivity in this complex and the 17O and 1H hyperfine coupling constants (HFCCs). The analysis of the NMRD and 17O NMR data provided a water exchange rate of kex298 = 28.2 × 106 s−1, and AO/ħ and AH/ħ hyperfine coupling constants of −34.6 and 5.4 rad s−1, respectively. DFT calculations (TPSSh model) performed on the [Mn(H2O)6]2+ and [Mn(H2O)6]2+·12H2O systems were used to evaluate theoretically the 17O and 1H HFCCs responsible for the 17O NMR chemical shifts and the scalar contributions to 17O and 1H NMR relaxation rates. The use of a mixed cluster–continuum approach with the explicit inclusion of second-sphere water molecules is critical for an accurate calculation of HFCCs of coordinated water molecules. The impact of complex dynamics on the calculated HFCCs was evaluated with the use of molecular dynamics simulations within the atom-centered density matrix propagation (ADMP) approach. These molecular dynamics simulations show that the Aiso values are critically affected by the distance between the oxygen atom of the coordinated water molecule and the MnII ion, as well as by the orientation of the water molecule plane with respect to the Mn–O vector. The substantial scalar contribution to relaxivity observed for [Mn(H2O)6]2+ is related to a combination of a slow water exchange rate and a slow electron spin relaxation.Xunta de Galicia; EM2012/08

    Water exchange in lanthanide complexes for MRI applications. Lessons learned over the last 25 years

    Get PDF
    [Abstract] The water exchange rates of water molecules coordinated to the metal ion in lanthanide complexes have been profusely investigated during the last 25 years, especially in the case of Gd3+ and Eu3+ complexes. This is mainly related to the important application of some Gd3+ complexes as contrast agents in magnetic resonance imaging (MRI), and the intensive investigation of Eu3+ complexes as contrast agent candidates providing contrast through the chemical exchange saturation transfer mechanism (CEST). Both applications require a fine tunning of the exchange rate of the coordinated water molecule to yield optimal response. Herein we review the progress made in this field to control water exchange in a rational way through ligand design, providing relationships between the observed trends, the structures of the complexes and the mechanisms responsible for the water exchange reaction.Ministerio de EconomĂ­a y Competitividad; CTQ2016-76756-PXunta de Galicia; ED431B 2017/59Xunta de Galicia; ED431D 2017/01Ministerio de Ciencia, InnovaciĂłn y Universidades; PRX18/00201Estados Unidos. U.S. National Institute of Biomedical Imaging and Bioengineering; R01EB009062Estados Unidos; National Institute of Diabetes and Digestive and Kidney Diseases; U01DK10430

    Surprising Complexity of the [Gd(AAZTA)(H2O)2]− Chelate Revealed by NMR in the Frequency and Time Domains

    Get PDF
    [Abstract] Typically, Ln(III) complexes are isostructural along the series, which enables studying one particular metal chelate to derive the structural features of the others. This is not the case for [Ln(AAZTA)(H2O)x]− (x = 1, 2) systems, where structural variations along the series cause changes in the hydration number of the different metal complexes, and in particular the loss of one of the two metal-coordinated water molecules between Ho and Er. Herein, we present a 1H field-cycling relaxometry and 17O NMR study that enables accessing the different exchange dynamics processes involving the two water molecules bound to the metal center in the [Gd(AAZTA)(H2O)2]− complex. The resulting picture shows one Gd-bound water molecule with an exchange rate ∌6 times faster than that of the other, due to a longer metal–water distance, in accordance with density functional theory (DFT) calculations. The substitution of the more labile water molecule with a fluoride anion in a diamagnetic-isostructural analogue of the Gd-complex, [Y(AAZTA)(H2O)2]−, allows us to follow the chemical exchange process by high-resolution NMR and to describe its thermodynamic behavior. Taken together, the variety of tools offered by NMR (including high-resolution 1H, 19F NMR as a function of temperature, 1H longitudinal relaxation rates vs B0, and 17O transverse relaxation rates vs T) provides a complete description of the structure and exchange dynamics of these Ln-complexes along the series.This research was supported by the UniversitĂ  del Piemonte Orientale (Ricerca locale FAR2019). F.C., L.T., and M.B. acknowledge the financial support from the Ministero dell’UniversitĂ  e della Ricerca (PRIN 2017A2KEPL project “Rationally designed nanogels embedding paramagnetic ions as MRI probes”). This work was carried out within the framework of the COST CA15209 Action “European Network on NMR Relaxometry”Italia. Ministero dell'UniversitĂ  e della Ricerca; PRIN-2017A2KEP
    • 

    corecore