141 research outputs found

    Photophysics of indole upon x-ray absorption

    Full text link
    A photofragmentation study of gas-phase indole (C8_8H7_7N) upon single-photon ionization at a photon energy of 420 eV is presented. Indole was primarily inner-shell ionized at its nitrogen and carbon 1s1s orbitals. Electrons and ions were measured in coincidence by means of velocity map imaging. The angular relationship between ionic fragments is discussed along with the possibility to use the angle-resolved coincidence detection to perform experiments on molecules that are strongly oriented in their recoil-frame. The coincident measurement of electrons and ions revealed fragmentation-pathway-dependent electron spectra, linking the structural fragmentation dynamics to different electronic excitations. Evidence for photoelectron-impact self-ionization was observed.Comment: 11 pages, 6 figure

    Observation of the hyperfine transition in lithium-like Bismuth 209Bi80+^{209}\text{Bi}^{80+}: Towards a test of QED in strong magnetic fields

    Full text link
    We performed a laser spectroscopic determination of the 2s2s hyperfine splitting (HFS) of Li-like 209Bi80+^{209}\text{Bi}^{80+} and repeated the measurement of the 1s1s HFS of H-like 209Bi82+^{209}\text{Bi}^{82+}. Both ion species were subsequently stored in the Experimental Storage Ring at the GSI Helmholtzzentrum f\"ur Schwerionenforschung Darmstadt and cooled with an electron cooler at a velocity of 0.71c\approx 0.71\,c. Pulsed laser excitation of the M1M1 hyperfine-transition was performed in anticollinear and collinear geometry for Bi82+\text{Bi}^{82+} and Bi80+\text{Bi}^{80+}, respectively, and observed by fluorescence detection. We obtain ΔE(1s)=5086.3(11)meV\Delta E^{(1s)}= 5086.3(11)\,\textrm{meV} for Bi82+\text{Bi}^{82+}, different from the literature value, and ΔE(2s)=797.50(18)meV\Delta E^{(2s)}= 797.50(18)\,\textrm{meV} for Bi80+\text{Bi}^{80+}. These values provide experimental evidence that a specific difference between the two splitting energies can be used to test QED calculations in the strongest static magnetic fields available in the laboratory independent of nuclear structure effects. The experimental result is in excellent agreement with the theoretical prediction and confirms the sum of the Dirac term and the relativistic interelectronic-interaction correction at a level of 0.5% confirming the importance of accounting for the Breit interaction.Comment: 5 pages, 2 figure

    Long-range angular correlations on the near and away side in p–Pb collisions at

    Get PDF

    Azimuthal anisotropy of charged jet production in root s(NN)=2.76 TeV Pb-Pb collisions

    Get PDF
    We present measurements of the azimuthal dependence of charged jet production in central and semi-central root s(NN) = 2.76 TeV Pb-Pb collisions with respect to the second harmonic event plane, quantified as nu(ch)(2) (jet). Jet finding is performed employing the anti-k(T) algorithm with a resolution parameter R = 0.2 using charged tracks from the ALICE tracking system. The contribution of the azimuthal anisotropy of the underlying event is taken into account event-by-event. The remaining (statistical) region-to-region fluctuations are removed on an ensemble basis by unfolding the jet spectra for different event plane orientations independently. Significant non-zero nu(ch)(2) (jet) is observed in semi-central collisions (30-50% centrality) for 20 <p(T)(ch) (jet) <90 GeV/c. The azimuthal dependence of the charged jet production is similar to the dependence observed for jets comprising both charged and neutral fragments, and compatible with measurements of the nu(2) of single charged particles at high p(T). Good agreement between the data and predictions from JEWEL, an event generator simulating parton shower evolution in the presence of a dense QCD medium, is found in semi-central collisions. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).Peer reviewe

    Forward-central two-particle correlations in p-Pb collisions at root s(NN)=5.02 TeV

    Get PDF
    Two-particle angular correlations between trigger particles in the forward pseudorapidity range (2.5 2GeV/c. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B. V.Peer reviewe

    Event-shape engineering for inclusive spectra and elliptic flow in Pb-Pb collisions at root(NN)-N-S=2.76 TeV

    Get PDF
    Peer reviewe

    Elliptic flow of muons from heavy-flavour hadron decays at forward rapidity in Pb-Pb collisions at root s(NN)=2.76TeV

    Get PDF
    The elliptic flow, v(2), of muons from heavy-flavour hadron decays at forward rapidity (2.5 <y <4) is measured in Pb-Pb collisions at root s(NN)= 2.76TeVwith the ALICE detector at the LHC. The scalar product, two- and four-particle Q cumulants and Lee-Yang zeros methods are used. The dependence of the v(2) of muons from heavy-flavour hadron decays on the collision centrality, in the range 0-40%, and on transverse momentum, p(T), is studied in the interval 3 <p(T)<10 GeV/c. A positive v(2) is observed with the scalar product and two-particle Q cumulants in semi-central collisions (10-20% and 20-40% centrality classes) for the p(T) interval from 3 to about 5GeV/c with a significance larger than 3 sigma, based on the combination of statistical and systematic uncertainties. The v(2) magnitude tends to decrease towards more central collisions and with increasing pT. It becomes compatible with zero in the interval 6 <p(T)<10 GeV/c. The results are compared to models describing the interaction of heavy quarks and open heavy-flavour hadrons with the high-density medium formed in high-energy heavy-ion collisions. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B.V.Peer reviewe

    Pseudorapidity and transverse-momentum distributions of charged particles in proton-proton collisions at root s=13 TeV

    Get PDF
    The pseudorapidity (eta) and transverse-momentum (p(T)) distributions of charged particles produced in proton-proton collisions are measured at the centre-of-mass energy root s = 13 TeV. The pseudorapidity distribution in vertical bar eta vertical bar <1.8 is reported for inelastic events and for events with at least one charged particle in vertical bar eta vertical bar <1. The pseudorapidity density of charged particles produced in the pseudorapidity region vertical bar eta vertical bar <0.5 is 5.31 +/- 0.18 and 6.46 +/- 0.19 for the two event classes, respectively. The transverse-momentum distribution of charged particles is measured in the range 0.15 <p(T) <20 GeV/c and vertical bar eta vertical bar <0.8 for events with at least one charged particle in vertical bar eta vertical bar <1. The evolution of the transverse momentum spectra of charged particles is also investigated as a function of event multiplicity. The results are compared with calculations from PYTHIA and EPOS Monte Carlo generators. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).Peer reviewe

    Centrality evolution of the charged-particle pseudorapidity density over a broad pseudorapidity range in Pb-Pb collisions at root s(NN)=2.76TeV

    Get PDF
    Peer reviewe

    Untersuchung der Photoelektronen-Winkelverteilungen von ausgerichteten Molekülen in der Gasphase

    No full text
    This work investigates if and how photoelectron diffraction might become a suitable tool to measure structural changes of small molecules in the gas-phase with femtosecond temporal and angstrom spatial resolution. Molecular-frame photoelectron angular distributions (MFPAD) of O(1ss)-, S(2pp)- and F(1ss)-electrons from carbonyl sulfide and fluoromethane molecules have been measured in photoelectron-photoion coincidence experiments at the synchrotron radiation sources DORIS and PETRA III (kinetic energy of photoelectrons: 16 eV < EPE_{\mathrm{PE}} < 283 eV). It has been investigated which degree of molecular orientation is necessary to observe a rich structure in the MFPADs, which influence linearly and circularly polarized photons have on MFPADs, and if MFPADs of photoelectrons with a few 100 eV kinetic energy can be described by a simple scattering model.The relation of the measured MFPADs to the molecular structure was examined by MSXα\alpha calculations. At the free-electron laser FLASH, S(2pp)-photoelectron angular distributions of adiabatically laser-aligned OCS molecules have been measured (EPE_{\mathrm{PE}}=44 eV). In an IR-pump-XUV-probe experiment at FLASH, molecular dynamics have been observed in the photoelectron angular distributions with femtosecond temporal resolution. The influence of the alignment and the pump laser on molecules and on photoelectrons has been discussed. This work indicates avenues how to reach the goal of observing ultrafast molecular structural changes by photoelectron diffraction
    corecore