128 research outputs found

    Prediction of dynamic pairwise wake vortex separations for approach and landing

    Get PDF
    Design and performance of the Wake Vortex Prediction and Monitoring System WSVBS are described. The WSVBS has been developed to tactically increase airport capacity for approach and landing on single runways as well as closely-spaced parallel runways. It is thought to dynamically adjust aircraft separations dependent on weather conditions and the resulting wake vortex behavior without compro-mis>ing safety. Dedicated meteorological instrumentation and short-term numerical terminal weather prediction provide the input to the prediction of wake-vortex behavior and respective safety areas. LIDAR monitors the correctness of WSVBS predictions in the most critical gates at low altitude. The WSVBS is integrated in the arrival manager AMAN of DLR. Performance tests of the WSVBS have been accomplished at Frankfurt airport in winter 2006/07 and at Munich Airport in summer 2010. Aircraft separations for landings on single runways have been compared employing the concepts of either heavy-medium weight class combinations or dynamic pairwise separations where individual aircraft type pairings are considered. For the very conservative baseline setup of the WSVBS the potential capacity gains of dynamic pairwise operations for single runways appear to be very small. On the other hand, the consideration of individual aircraft types and their respective wake characteristics may almost double the fraction of time when radar separation could be applied

    Grasländer des gemäßigten Europas in einer sich verändernden Welt : Vorwort zum 16. EDGG-Sonderteil in Tuexenia

    Get PDF
    Mitglieder der Eurasian Dry Grassland Group (EDGG) und deren Vorgängerorganisationen geben seit 16 Jahren Grasland-Sonderausgaben (Special Features) in Tuexeniaheraus. Das diesjährige Special Feature mit dem Titel Grasländer des gemäßigten Europas in einer sich verändernden Welt umfasst sieben Artikel, die verschiedene Aspekte der Graslandforschung beleuchten und dabei unterschiedliche Organismengruppen einbeziehen: LLUMIQUINGA et al. untersuchten Langzeiteffekte von Einsaat, Mahd und Kohlenstoffzusatz (Reduktion der Nährstoffverfügbarkeit durch Verschiebung des C/N-Verhältnis) auf den Renaturierungserfolg von pannonischem Sandgrasland auf ehemaligen Äckern. BÓDIS et al. verglichen die kurzfristigen Effekte verschiedener Pflegemaßnahmen (Mahd mit/ohne Abfuhr des Schnittguts sowie Brennen) auf den ökologischen Zustand aufgegebener Pfeifengraswiesen in Westun-garn. BALOGH et al. analysierten Verzehrraten und Ernährungspräferenzen von Rindern in artenreichen Steppenwiesen der ungarischen Tiefebene, um eine nachhaltige Grasland- und Viehwirtschaft zu er-möglichen. HEER et al. untersuchten Dichteeffekte der zwei Hemiparasiten Melampyrum arvense und M. nemorosum auf die Pflanzenartenvielfalt im Grasland der Insel Saaremaa (Estland). KUMMLI et al. führten 25 Jahre nach der Ersterfassung eine Wiedererhebung der Artenzusammensetzung und Diversi-tät und der Vegetation von urbanen Grasländern in Zürich durch. CHARMILLOT et al. (2021) untersuch-ten die Vegetationsveränderungen von Kalkhalbtrockenrasen des Schweizer Juras in den vergangenen 40 Jahren mittels Wiedererhebungen von bekannten Untersuchungsflächen. ROLEČEKet al. (2021) korrigierten den 2019 in Tuexenia veröffentlichten Höchstwert von 106 Arten (ROLEČEKet al. 2019) in einer siebenbürgischen Steppenwiese (Rumänien), der aufgrund einer fehlerhaften Flächenabgren-zung in einer 10,9 m2-Fläche und nicht wie angegeben in einer 10 m2 großen Fläche ermittelt wurde,und meldeten gleichzeitig neue Höchstwerte für den Artenreichtum an Gefäßpflanzen, die jemals in 10 m2-Flächen ermittelt wurden (115 und 110 Arten in zwei benachbarten Flächen)

    Drivers of plant diversity in Bulgarian dry grasslands vary across spatial scales and functional-taxonomic groups

    Get PDF
    Questions: Studying dry grasslands in a previously unexplored region, we asked: (a) which environmental factors drive the diversity patterns in vegetation; (b) are taxonomic groups (vascular plants, bryophytes, lichens) and functional vascular plant groups differently affected; and (c) how is fine-grain beta diversity affected by environmental drivers? Location: Northwestern and Central Bulgaria. Methods: We sampled environmental data and vascular plant, terricolous bryophyte and lichen species in 97 10-m2 plots and 15 nested-plot series with seven grain sizes (0.0001–100 m2) of ten grassland sites within the two regions. We used species richness as measure of alpha-diversity and the z-value of the power-law species–area relationship as measure of beta-diversity. We analysed effects of landscape, topographic, soil and land-use variables on the species richness of the different taxonomic and functional groups. We applied generalised linear models (GLMs) or, in the presence of spatial autocorrelation, generalised linear mixed-effect models (GLMMs) in a multi-model inference framework. Results: The main factors affecting total and vascular plant species richness in 10-m2 plots were soil pH (unimodal) and inclination (negative). Species richness of bryophytes was positively affected by rock cover, sand proportion and negatively by inclination. Inclination and litter cover were also negative predictors of lichen species richness. Elevation negatively affected phanerophyte and therophyte richness, but positively that of cryptophytes. A major part of unexplained variance in species richness was associated with the grassland site. The z-values for total richness showed a positive relationship with elevation and inclination. Conclusions: Environmental factors shaping richness patterns strongly differed among taxonomic groups, functional vascular plant groups and spatial scales. The disparities between our and previous findings suggest that many drivers of biodiversity cannot be generalised but rather depend on the regional context. The large unexplained variance at the site level calls for considering more site-related factors such as land-use history

    Organic carbon production, mineralization and preservation on the Peruvian margin

    Get PDF
    Carbon cycling in Peruvian margin sediments (11° S and 12° S) was examined at 16 stations from 74 m on the inner shelf down to 1024 m water depth by means of in situ flux measurements, sedimentary geochemistry and modeling. Bottom water oxygen was below detection limit down to ca. 400 m and increased to 53 μM at the deepest station. Sediment accumulation rates and benthic dissolved inorganic carbon fluxes decreased rapidly with water depth. Particulate organic carbon (POC) content was lowest on the inner shelf and at the deep oxygenated stations (< 5%) and highest between 200 and 400 m in the oxygen minimum zone (OMZ, 15–20%). The organic carbon burial efficiency (CBE) was unexpectedly low on the inner shelf (< 20%) when compared to a global database, for reasons which may be linked to the frequent ventilation of the shelf by oceanographic anomalies. CBE at the deeper oxygenated sites was much higher than expected (max. 81%). Elsewhere, CBEs were mostly above the range expected for sediments underlying normal oxic bottom waters, with an average of 51 and 58% for the 11° S and 12° S transects, respectively. Organic carbon rain rates calculated from the benthic fluxes alluded to a very efficient mineralization of organic matter in the water column, with a Martin curve exponent typical of normal oxic waters (0.88 ± 0.09). Yet, mean POC burial rates were 2–5 times higher than the global average for continental margins. The observations at the Peruvian margin suggest that a lack of oxygen does not affect the degradation of organic matter in the water column but promotes the preservation of organic matter in marine sediments

    GrassPlot v. 2.00 – first update on the database of multi-scale plant diversity in Palaearctic grasslands

    Get PDF
    Abstract: GrassPlot is a collaborative vegetation-plot database organised by the Eurasian Dry Grassland Group (EDGG) and listed in the Global Index of Vegetation-Plot Databases (GIVD ID EU-00-003). Following a previous Long Database Report (Dengler et al. 2018, Phyto- coenologia 48, 331–347), we provide here the first update on content and functionality of GrassPlot. The current version (GrassPlot v. 2.00) contains a total of 190,673 plots of different grain sizes across 28,171 independent plots, with 4,654 nested-plot series including at least four grain sizes. The database has improved its content as well as its functionality, including addition and harmonization of header data (land use, information on nestedness, structure and ecology) and preparation of species composition data. Currently, GrassPlot data are intensively used for broad-scale analyses of different aspects of alpha and beta diversity in grassland ecosystems

    The spinal cord injury-induced immune deficiency syndrome: results of the SCIentinel study

    Full text link
    Infections are prevalent after spinal cord injury (SCI), constitute the main cause of death and are a rehabilitation confounder associated with impaired recovery. We hypothesize that SCI causes an acquired lesion-dependent (neurogenic) immune suppression as an underlying mechanism to facilitate infections. The international prospective multicentre cohort study (SCIentinel; protocol registration DRKS00000122; n = 111 patients) was designed to distinguish neurogenic from general trauma-related effects on the immune system. Therefore, SCI patient groups differing by neurological level, i.e. high SCI [thoracic (Th)4 or higher]; low SCI (Th5 or lower) and severity (complete SCI; incomplete SCI), were compared with a reference group of vertebral fracture (VF) patients without SCI. The primary outcome was quantitative monocytic Human Leukocyte Antigen-DR expression (mHLA-DR, synonym MHC II), a validated marker for immune suppression in critically ill patients associated with infection susceptibility. mHLA-DR was assessed from Day 1 to 10 weeks after injury by applying standardized flow cytometry procedures. Secondary outcomes were leucocyte subpopulation counts, serum immunoglobulin levels and clinically defined infections. Linear mixed models with multiple imputation were applied to evaluate group differences of logarithmic-transformed parameters. Mean quantitative mHLA-DR [ln (antibodies/cell)] levels at the primary end point 84 h after injury indicated an immune suppressive state below the normative values of 9.62 in all groups, which further differed in its dimension by neurological level: high SCI [8.95 (98.3% confidence interval, CI: 8.63; 9.26), n = 41], low SCI [9.05 (98.3% CI: 8.73; 9.36), n = 29], and VF without SCI [9.25 (98.3% CI: 8.97; 9.53), n = 41, P = 0.003]. Post hoc analysis accounting for SCI severity revealed the strongest mHLA-DR decrease [8.79 (95% CI: 8.50; 9.08)] in the complete, high SCI group, further demonstrating delayed mHLA-DR recovery [9.08 (95% CI: 8.82; 9.38)] and showing a difference from the VF controls of -0.43 (95% CI: -0.66; -0.20) at 14 days. Complete, high SCI patients also revealed constantly lower serum immunoglobulin G [-0.27 (95% CI: -0.45; -0.10)] and immunoglobulin A [-0.25 (95% CI: -0.49; -0.01)] levels [ln (g/l × 1000)] up to 10 weeks after injury. Low mHLA-DR levels in the range of borderline immunoparalysis (below 9.21) were positively associated with the occurrence and earlier onset of infections, which is consistent with results from studies on stroke or major surgery. Spinal cord injured patients can acquire a secondary, neurogenic immune deficiency syndrome characterized by reduced mHLA-DR expression and relative hypogammaglobulinaemia (combined cellular and humoral immune deficiency). mHLA-DR expression provides a basis to stratify infection-risk in patients with SCI

    Vegetation of Europe: hierarchical floristic classification system of vascular plant, bryophyte, lichen, and algal communities

    Get PDF
    Vegetation classification consistent with the Braun-Blanquet approach is widely used in Europe for applied vegetation science, conservation planning and land management. During the long history of syntaxonomy, many concepts and names of vegetation units have been proposed, but there has been no single classification system integrating these units. Here we (1) present a comprehensive, hierarchical, syntaxonomic system of alliances, orders and classes of Braun-Blanquet syntaxonomy for vascular plant, bryophyte and lichen, and algal communities of Europe; (2) briefly characterize in ecological and geographic terms accepted syntaxonomic concepts; (3) link available synonyms to these accepted concepts; and (4) provide a list of diagnostic species for all classes. Location: European mainland, Greenland, Arctic archipelagos (including Iceland, Svalbard, Novaya Zemlya), Canary Islands, Madeira, Azores, Caucasus, Cyprus. Methods: We evaluated approximately 10 000 bibliographic sources to create a comprehensive list of previously proposed syntaxonomic units. These units were evaluated by experts for their floristic and ecological distinctness, clarity of geographic distribution and compliance with the nomenclature code. Accepted units were compiled into three systems of classes, orders and alliances (EuroVegChecklist, EVC) for communities dominated by vascular plants (EVC1), bryophytes and lichens (EVC2) and algae (EVC3). Results: EVC1 includes 109 classes, 300 orders and 1108 alliances; EVC2 includes 27 classes, 53 orders and 137 alliances, and EVC3 includes 13 classes, 24 orders and 53 alliances. In total 13 448 taxa were assigned as indicator species to classes of EVC1, 2087 to classes of EVC2 and 368 to classes of EVC3. Accepted syntaxonomic concepts are summarized in a series of appendices, and detailed information on each is accessible through the software tool EuroVegBrowser. Conclusions: This paper features the first comprehensive and critical account of European syntaxa and synthesizes more than 100 yr of classification effort by European phytosociologists. It aims to document and stabilize the concepts and nomenclature of syntaxa for practical uses, such as calibration of habitat classification used by the European Union, standardization of terminology for environmental assessment, management and conservation of nature areas, landscape planning and education. The presented classification systems provide a baseline for future development and revision of European syntaxonomy.info:eu-repo/semantics/publishedVersio

    PI3Kδ and primary immunodeficiencies.

    Get PDF
    Primary immunodeficiencies are inherited disorders of the immune system, often caused by the mutation of genes required for lymphocyte development and activation. Recently, several studies have identified gain-of-function mutations in the phosphoinositide 3-kinase (PI3K) genes PIK3CD (which encodes p110δ) and PIK3R1 (which encodes p85α) that cause a combined immunodeficiency syndrome, referred to as activated PI3Kδ syndrome (APDS; also known as p110δ-activating mutation causing senescent T cells, lymphadenopathy and immunodeficiency (PASLI)). Paradoxically, both loss-of-function and gain-of-function mutations that affect these genes lead to immunosuppression, albeit via different mechanisms. Here, we review the roles of PI3Kδ in adaptive immunity, describe the clinical manifestations and mechanisms of disease in APDS and highlight new insights into PI3Kδ gleaned from these patients, as well as implications of these findings for clinical therapy

    GrassPlot - a database of multi-scale plant diversity in Palaearctic grasslands

    Get PDF
    GrassPlot is a collaborative vegetation-plot database organised by the Eurasian Dry Grassland Group (EDGG) and listed in the Global Index of Vegetation-Plot Databases (GIVD ID EU-00-003). GrassPlot collects plot records (releves) from grasslands and other open habitats of the Palaearctic biogeographic realm. It focuses on precisely delimited plots of eight standard grain sizes (0.0001; 0.001;... 1,000 m(2)) and on nested-plot series with at least four different grain sizes. The usage of GrassPlot is regulated through Bylaws that intend to balance the interests of data contributors and data users. The current version (v. 1.00) contains data for approximately 170,000 plots of different sizes and 2,800 nested-plot series. The key components are richness data and metadata. However, most included datasets also encompass compositional data. About 14,000 plots have near-complete records of terricolous bryophytes and lichens in addition to vascular plants. At present, GrassPlot contains data from 36 countries throughout the Palaearctic, spread across elevational gradients and major grassland types. GrassPlot with its multi-scale and multi-taxon focus complements the larger international vegetationplot databases, such as the European Vegetation Archive (EVA) and the global database " sPlot". Its main aim is to facilitate studies on the scale-and taxon-dependency of biodiversity patterns and drivers along macroecological gradients. GrassPlot is a dynamic database and will expand through new data collection coordinated by the elected Governing Board. We invite researchers with suitable data to join GrassPlot. Researchers with project ideas addressable with GrassPlot data are welcome to submit proposals to the Governing Board

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world\u27s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications
    corecore