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Abstract

Primary immunodeficiencies are inherited disorders of the immune system, often caused by the 

mutation of genes required for lymphocyte development and activation. Recently, several studies 

have identified gain-of-function mutations in the phosphoinositide 3-kinase (PI3K) genes PIK3CD 
(which encodes p110δ) and PIK3R1 (which encodes p85α) that cause a combined 

immunodeficiency syndrome, referred to as activated PI3Kδ syndrome (APDS) or p110δ-

activating mutation causing senescent T cells, lymphadenopathy and immunodeficiency (PASLI). 

Paradoxically, both loss-of-function and gain-of-function mutations that affect these genes lead to 

immunosuppression, albeit via different mechanisms. Here, we review the roles of PI3Kδ in 

adaptive immunity, describe the clinical manifestations and mechanisms of disease in APDS and 

highlight new insights into PI3Kδ gleaned from these patients, as well as implications of these 

findings for clinical therapy.

Introduction

Activated PI3Kδ syndrome (APDS; also known as PASLI) is among a growing number of 

newly defined primary immunodeficiency (PID) syndromes in which the causal mutations 

have been identified by next-generation sequencing. The clinical manifestations of APDS 

are diverse and heterogeneous (Box 1), but the majority of patients present with recurrent 

respiratory infections, often associated with airway scarring (bronchiectasis) and ear and 

sinus damage, which is suggestive of antibody (B cell) deficiency. Severe, recurrent or 

persistent infections with herpes family viruses, indicating defective T cell function, are also 
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common in this condition, and may cause early death in some affected individuals. Many 

patients develop benign lymphadenopathy, often associated with hepatosplenomegaly, and 

there is a substantially increased risk of B cell lymphoma associated with APDS (Box 1). 

Increased susceptibility to viral infection and poor recall responses of memory T cells 

differentiate APDS from isolated hypogammaglobulinemia 1–4, hence APDS should be 

considered a combined immunodeficiency5. More than 100 patients have been reported to 

date with APDS, but the precise incidence is not yet known6, 7.

APDS is caused by heterozygous gain-of-function (GOF) mutations in PIK3CD or PIK3R1 
that induce hyperactivation of the protein products p110δ or p85α, respectively1–4. The 

p85α regulatory subunit and p110δ catalytic subunit together form the heterodimeric lipid 

kinase PI3Kδ, which is engaged by multiple receptors in cells of the immune system, 

including the B cell receptor (BCR) and the T cell receptor (TCR), as well as cytokine and 

costimulatory receptors. Homozygous loss-of-function (LOF) mutations in these same 

subunits cause a distinct and much rarer form of immunodeficiency in humans, which can be 

re-capitulated in mice8–10, and this apparent dichotomy, together with the clinical features 

of the affected patient groups, has informed our understanding of the role of PI3Kδ in 

immune cell development and function.

In this review, we will summarise what is known about PI3Kδ, focusing on its regulation of 

adaptive immune responses. Much of this knowledge derives from studies using gene-

targeted mice. We will then summarise the two cases that have been reported on PI3Kδ-

deficiency in humans, before describing in greater detail the clinical and immunological 

manifestations of APDS.

Overview of class I PI3Ks

The class IA PI3Ks are heterodimeric proteins composed of (and named after) a p110α, 

p110β or p110δ catalytic subunit that constitutively associates with a p85 regulatory subunit; 

the sole class IB PI3K is composed of the p110γ catalytic subunit that interacts with a p101 

or p84 regulatory subunit (Table 1). p110α and p110β are broadly expressed, whereas 

p110γ and p110δ are predominantly expressed by leukocytes. Although there is substantial 

potential for redundancy among the catalytic subunits, unique roles for each individual p110 

isoform have been described, reflecting their different expression patterns as well as how 

they are engaged by their respective receptors8, 11. For example, p110α is activated by 

insulin-like receptors and regulates growth, metabolism and angiogenesis11, whereas p110β 
contributes to metabolic signalling and has been shown to regulate responses of mouse 

neutrophils to immune complexes 12, 13. P110γ is highly expressed in myeloid cells and 

contributes to chemotactic responses, as well as reactive oxygen species (ROS) production in 

neutrophils14. Together with p110δ, p110γ is also important during pre-T cell development 

in the thymus15. p110δ, which is the focus of this review, is highly expressed both in 

lymphocytes and myeloid cells and is activated by antigen receptors, costimulatory 

receptors, cytokine receptors and growth factor receptors8.

Class I PI3Ks catalyse the phosphorylation of PtdIns(4,5)P2 to generate PtdIns(3,4,5)P3 

(PIP3), which acts as a membrane tether for cell signalling proteins with pleckstrin 
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homology (PH) domains. Prominent among these are PDK1 and AKT, which act in concert 

to phosphorylate substrates such as the FOXO transcription factors (which become 

inactivated) and regulators of the mTOR complex 1 (which becomes activated). Therefore, 

activation of class I PI3Ks results in inactivation of FOXO transcription factors. In 

lymphocytes, BTK and ITK are PIP3-responsive tyrosine kinases that contribute to the 

activation of phospholipase C-gamma (PLCγ) and other downstream signalling proteins 

(Figs 1, 2). The lipid phosphatase PTEN converts PIP3 back to PtdIns(4,5)P2 8.

Class IA PI3K regulatory subunits are encoded by three different genes (PIK3R1, PIK3R2 
and PIK3R3) (Table 1). PIK3R1 encodes p85α, p55α and p50α (each from an alternative 

transcription start site), PIK3R2 encodes p85β, and PIK3R3 encodes p55γ 16. These 

regulatory subunits have SH2 domains, which bind phosphorylated YXXM motifs of cell 

surface receptors and membrane-associated proteins. p85α, p55α, p50α and p85β are 

ubiquitously expressed, whereas p55γ is mainly expressed in the brain and testes 16. Any of 

the class IA PI3K regulatory subunits can bind to p110α, p110β and p110δ without apparent 

selectivity. PI3Kδ is best understood to comprise p85α with p110δ, but association between 

p110δ and any of the other class IA PI3K regulatory subunits is also possible. It is also 

important to recognise that p85α has many p110δ-independent functions, as it can also bind 

p110α and p110β 16.

The class IA PI3K regulatory subunits influence the p110 catalytic subunits in three ways17: 

they prevent proteolytic degradation of p110; they inhibit p110 catalytic activity; and they 

recruit the p110 subunit to tyrosine phosphorylated proteins at the plasma membrane.

Once the SH2 domains of p85α are engaged by phosphotyrosines, the inhibitory contacts 

with p110 are relieved17. Thus, mutations in the PIK3R1 gene can influence PI3K activity 

by allowing the degradation of p110δ or by diminishing its recruitment to receptors (in the 

case of PIK3R1 null or LOF mutations), or by releasing the inhibitory action of p85α on 

p110δ (in the case of PIK3R1 GOF mutations). In addition to the regulatory subunits, 

p110α and p110δ can bind RAS and p110β binds RAC or CDC42. These small GTPases 

help tether the p110 subunit to the membrane once it has been recruited to a receptor via its 

regulatory subunit17, 18.

PI3Kδ and immunity: lessons from mice

Prior to the description of APDS, most of our knowledge of the role of PI3Kδ in immunity 

and infection was based on genetic and pharmacological studies using mouse models. The 

GOF mutations that cause APDS have recently been shown to result in increased basal and 

stimulated PIP3 levels and PIP3-dependent signalling cascades in patient-derived 

lymphocytes1–4, and the study of these patients may give us new insights into how the 

balance of PI3Kδ activity regulates immune cell functions. Here, we summarise what these 

studies in mice have taught us, before describing the immunological phenotypes of human 

patients with mutations in PIK3R1 or PIK3CD.
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Loss of PI3Kδ function in mouse B cells

In mice, early B cell development in the bone marrow is only mildly affected by the loss of 

p85α or p110δ19–23, whereas the combined loss of p110α and p110δ leads to a near-

complete development block at the pro-B cell stage24. However, mice lacking the p85α or 

p110δ subunits have fewer follicular B cells, lack marginal zone (MZ) B cells and peritoneal 

B1 B cells, have reduced serum immunoglobulins, and respond poorly to vaccination19–23. 

PI3Kδ couples BCR activation with both PIP3 production and signalling events downstream 

of the BCR (Fig 1). PI3Kδ-deficient B cells fail to respond to mitogenic stimuli, but undergo 

class-switch recombination (CSR) in response to interleukin-4 (IL-4) and lipopolysaccharide 

(LPS) in vitro19–26. However, mice lacking p110δ selectively in B cells can produce high-

affinity IgG antibodies in response to immunisation with the T cell-dependent (TD) antigen 

NP-CGG27 (but as discussed later, germline loss of PIK3R1 or PIK3CD leads to attenuated 

TD antibody responses). By contrast, PI3Kδ activity within B cells is required for T cell-

independent (TI) antibody responses . This may be due in part to the loss of B1 and MZ B 

cell subsets, which are the dominant B cell subsets that respond to TI antigens, in PI3Kδ-

deficient mice21, 22, 27, 28.

Consequences of hyperactive PI3Kδ signalling in B cells in mice

While there are several mouse models of LOF mutations in Pik3cd, the phenotype of Pik3cd 
GOF-mutant mice remains to be described. We can however, make inferences from other 

models of hyperactive PI3K signalling (in which Pten or Foxo1 is ablated in the germline or 

in B cells) or from mice expressing a membrane-bound form of p110α in B cells. PTEN 

antagonises PI3K signalling and hence its ablation leads to elevated PIP3 levels. FOXO 

transcription factors are negatively regulated by PI3K-AKT, and hence, their loss mimics 

some of the effects of hyperactive PI3K-AKT signalling. FOXO transcription factors induce 

the expression of genes involved in immunoglobulin gene recombination and development 

such as Rag1, Rag2, Ikaros and Il7a (Fig 1)29–31. Failure to undergo VDJ recombination 

because of elevated PI3K signalling and subsequent inactivation of FOXO1 can lead to a 

partial block of B cell development in the bone marrow29, 30. In addition, elevated PI3K 

signalling can increase the sensitivity of developing Pten-null B cells to negative selection 

by self antigens32. Interference with RAG expression and/or negative selection may lead to 

the development of B cells with aberrant phenotypes, as observed in patients with APDS 

(see later).

Activation-induced cytidine deaminase (AID; encoded by Aicda) is the master regulator of 

CSR and somatic hypermutation (SHM) 33. Deletion of Pten or Foxo1 in B cells impairs 

immunoglobulin class switching26, 30, 34, 35, suggesting that increased PI3K signalling in 

B cells antagonise this process. Indeed, addition of a PI3Kδ inhibitor can restore CSR in 

Pten-/- cells in vitro 35. AID is induced by FOXO1 and in-vitro activated Foxo1–/– B cells 

(which mimic B cells with GOF PI3Kδ mutations) exhibit impaired CSR, due partially to 

the loss of Aicda transcription; however, inefficient CSR was still observed in Pten–/– B cells 

in the presence of ectopic AID, suggesting that PI3K signalling also regulates CSR by 

affecting AID function at the post-transcriptional level26, 34, 35. During the germinal centre 

reaction , B cells cycle between the light zone and dark zone. B cells interact with cognate T 

cells in the light zone, and if they receive the appropriate signals, undergo CSR and then 
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traffic to the dark zone where they proliferate and undergo SHM36. When, Foxo1 was 

deleted specifically in germinal centre B cells, CSR was impaired despite normal Aicda 
transcription and AID protein expression. This suggests that FOXO1 regulates the targeting 

of AID to the immunoglobulin gene locus, that FOXO1 targets other genetic loci required 

for CSR and SHM, and/or that Foxo1 deletion in germinal centre B cells affects the 

expression of other proteins required for CSR37, 38. Moreover, Foxo1 ablation or induction 

of PI3K activity in germinal centre B cells led to loss of germinal centre dark zones due to 

aberrant trafficking of B cells, at least in part as a consequence of lost expression of CXC-

chemokine receptor 4 (Cxcr4), which is a target of FOXO137, 38. Hence, failure to expand 

antigen-specific B cells that have undergone selection in the germinal centre light zone is an 

additional cause of impaired high affinity class-switched antibody production.

Together, these findings contrast the effects of impaired PI3K signalling versus unrestrained 

PI3K signalling in B cells: PI3Kδ deficiency in mature B cells impairs TI antibody 

responses but does not affect CSR or SHM27, whereas, hyperactivation of PI3K signalling 

in mature B cells interferes with CSR and SHM and promotes the expansion of antigen-

specific B cell populations in the germinal centre dark zones (Fig 2) 26, 34, 35.

PI3Kδ is required for mouse CD4+ T cell differentiation and Treg cell function

If PI3Kδ-deficient B cells can undergo CSR, then why do PI3Kδ-deficient mice fail to 

respond to T cell-dependent vaccines? The answer relates to the provision of T cell help for 

B cell development and immunoglobulin class switching. ICOS is a T cell costimulatory 

receptor and a potent activator of PI3Kδ. Mutant mice in which ICOS has been uncoupled 

from PI3Kδ lack follicular helper T (Tfh) cells 39. Similarly, deletion of the p110δ subunit 

in T cells interferes with the development of Tfh cells, leading to a dramatic attenuation of T 

cell-dependent immune responses, including the induction of CSR and SHM in B cells27. 

These results highlight a dual role for PI3Kδ in antibody production: inactivation of PI3Kδ 
in B cells, which leads to activation of FOXO transcription factors, is a prerequisite for CSR 

and SHM26, 34, 35, whereas the activation of PI3Kδ in Tfh cells is a prerequisite for the 

provision of help to supports CSR and SHM in B cells27.

Naïve CD4+ T cell differentiation towards the Th1, Th2 and Th17 cell lineages is delayed or 

attenuated when PI3Kδ is inhibited40–42. This may reflect a key role for FOXO 

transcription factors in the suppression of Th cell differentiation, for example by suppressing 

the Ifng gene43, as well as the requirement for mTOR activity to promote Th cell 

differentiation44. A reduction in Th2 cell responses underpins the resistance of PI3Kδ-

deficient mice to experimentally induced asthma, despite elevated IgE levels25, 45. In 

addition, reduced Th17 cell responses may protect PI3Kδ-deficient mice from experimental 

autoimmune encephalomyelitis, a mouse model of multiple sclerosis46. Although PI3Kδ-

deficient mice only develop a partial Th1 cell response to Leishmania major infections, 

PI3Kδ-deficient mice control Leishmania major infections more effectively than wild-type 

mice, likely due to defects in a regulatory immune cell population47.

PI3Kδ is required for FOXP3+ regulatory T (Treg) cell homeostasis and function48. PI3Kδ-

deficient mice develop colitis because of inappropriate activation of effector T cells by gut 

microbes, and PI3Kδ-deficient Treg fail to suppress experimental colitis22, 48. Patients 
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taking the PI3Kδ inhibitor idelalisib (Zydelig; Gilead) also develop colitis, probably in part 

as a result of reduced Treg cell function49, 50. However, PI3Kδ-deficent mice and mice 

lacking p110δ only in Treg cells mount a more effective immune response against a broad 

range of tumours than wild-type mice51. As with antibody production, these data highlight 

the dual nature of PI3Kδ, which is required both for optimal cytokine production by effector 

T cells and for effective Treg cell-mediated tolerance. Whether PI3Kδ inhibition results in 

impaired or enhanced cell-mediated immune responses is context dependent and therefore 

difficult to predict (Fig 3). Interestingly, inactivation of PI3Kδ results in the 

hyperresponsiveness of dendritic cells and macrophages to Toll-like receptor ligands, 

resulting in increased IL-12 production, which may further contribute to increased cell-

mediated immune responses upon LOF of PI3Kδ 52.

PI3Kδ regulates mouse CD8+ T cell effector functions

PI3Kδ-deficient CD8+ T cells stimulated in vitro are characterised by a reduced abundance 

of mRNAs encoding proteins associated with inflammation and cytotoxicity, such as IFNγ, 
granzyme B and perforin51, 53, 54. By contrast, the expression of genes regulating the 

homing of T cells to the lymph nodes, such as Sell (which encodes CD62L), Ccr7 and Klf2 
are increased in PI3Kδ-deficient CD8+ T cells stimulated in vitro55. Thus, PI3Kδ can 

regulate the homeostatic trafficking of T cells to the lymph nodes and contributes to the 

reprogramming of CD8+ T cells to acquire full effector functions and migrate to peripheral 

tissues.

PI3Kδ is required to reach the optimal magnitude of CD8+ T cell responses in vivo53, 56. 

Nevertheless, PI3Kδ-deficient CD8+ T cells can become fully differentiated cytotoxic T 

cells that produce IFNγ and GZMB required for the killing of virus-infected cells or 

tumours; this suggests that the transcriptional defects described in vitro can, at least in part, 

be overcome by strong inflammatory stimuli in vivo51, 53. Moreover, long-term CD8+ T 

cell memory responses are intact in PI3Kδ-deficient mice53. This is partially because the 

generation of CD8+ effector T cells is reduced during recall responses, whereas the 

generation of long-term memory CD8+ T cells in the lymph nodes and bone marrow is 

preserved53. Similarly, the inhibition of the downstream kinase mTOR with low-dose 

rapamycin during vaccination or infection augments the generation of memory CD8+ T cells 

at the expense of effector CD8+ T cells57. Hence, by promoting mTOR activity, PI3Kδ 
skews CD8+ T cell differentiation in favour of effector T cells, but antagonises the 

generation of memory CD8+ T cells. Thus, strong PI3Kδ activity is associated with effector 

CD8+ T cell differentiation, whereas the maintenance of CD8+ T cell memory requires the 

suppression of PI3K signalling (Fig 4).

Consequences of hyperactive PI3K signalling in mouse T cells

Similar to B cells, the consequence of PI3Kδ hyperactivation in mouse T cells can be 

inferred from experiments using PTEN-deficient or FOXO1-deficient T cells. Loss of PTEN 

expression in early T cell development leads to the development of an immature T cell 

lymphoma and a hyperactivated T cell phenotype, characterised by the increased secretion of 

effector T cell cytokines and autoimmunity58. Similar results were observed in mice 

expressing a mutant p85α protein that lacked inhibitory contacts with the p110 catalytic 
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subunit59. Deleting PTEN in mature CD4+ T cells also resulted in enhanced cytokine 

production and Th cell function, but did not induce T cell transformation or autommunity60. 

Furthermore, loss of Foxo1 leads to a loss of memory CD8+ T cell development after 

infection61. Together, these data indicate a unique sensitivity of thymocytes to PI3Kδ-

dependent T cell transformation, and suggest that PI3Kδ signalling also affects central 

tolerance to self-peptides. Overall, these studies suggest that unrestrained PI3K signalling in 

T cells lowers their threshold of activation.

Alterations in PI3Kδ signalling leads to PIDs in humans

Both LOF and GOF mutations in PI3K genes that cause PIDs in humans have been 

described. Our understanding of the underpinning causes of these PIDs has been greatly 

aided by the use of mouse models (as described in the previous section), but have also 

furthered and challenged our understanding of the functions of PI3Kδ (Box 2 and below).

Loss of function of p85α or p110δ in humans

As with mouse T cells, inhibition of PI3Kδ in human T cells suppresses the expression of 

effector cytokines such as IFNγ, IL-4 and IL-17 41. A single patient with a homozygous 

PIK3R1 mutation that generated a premature stop codon (resulting in the loss of p85α and 

markedly decreased expression of p110δ) presented with recurrent pneumonia associated 

with agammaglobulinemia and severe B cell lymphopenia due to a block in early B cell 

development10. The development of colitis in this patient was attributed to antibody-

deficiency and the consequent outgrowth of gut pathogens, but could also be due to Treg cell 

deficiency10. Similarly, one patient lacking p110δ as a result of the inheritance of two 

different non-functional alleles has been described, and this patient presented with 

sinopulmonary infections, septic arthritis, inflammatory bowel disease and autoimmune 

hepatitis, associated with hypogammaglobulinemia9. Loss of p110δ was again associated 

with severe B cell lymphopenia and fewer memory T cells9. Thus, the two reported patients 

with a loss of PI3Kδ suffer infections associated with the lack of B cells. Interestingly, in 

mice, a complete block in B cell development and severe mature B cell lymphopenia are 

only observed when both the p110α and p110δ are inactivated in the B cell lineage24, 

suggesting a redundancy between these isoforms in mice that is not reflected in humans. The 

inflammatory and autoimmune manifestations in PI3Kδ-deficient humans, possibly 

associated with reduced Treg cell function, underscore the importance of PI3Kδ in 

maintaining self-tolerance. PI3Kδ is also required for the generation of ROS by human 

neutrophils and treatment of patients with the PI3Kδ inhibitor idelalisib can lead to 

neutropenia and increased risk of infections 49, 62.

Activating PI3Kδ mutations that underlie human APDS

In 2013, groups in Cambridge (UK) and Bethesda (US) reported whole-exome sequencing 

studies of patients with uncharacterised PID, which revealed causal heterozygous activating 

mutations in PIK3CD1, 2. The UK patients were identified by screening cohorts of PID 

patients with a high frequency of recurrent chest infections and bronchiectasis, features 

suggestive of antibody deficiency, although frequent herpes viral infections and an increased 

proportion of effector T cells were also noted1. The US cohort were identified on the basis 
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of persistent viremia with herpes-family viruses, which are commonly associated with 

altered T cell or natural killer (NK) cell function, in addition to frequent airway infections2. 

Because both B cells and T cells are affected in these patients, APDS should be 

characterised as a combined immunodeficiency1–5.

This immunodeficiency had previously been noted in a Taiwanese boy by targeted 

sequencing of the PIK3CD gene in children with B cell immunodeficiency, although the 

nature of the mutation (GOF or LOF) was not elucidated63. Subsequently, a number of 

additional studies have identified APDS patients with mutations in PIK3CD5, 7, 64–69 or 

PIK3R16, 70–73. Patients with GOF mutations in either of these genes appear to largely 

phenocopy each other, despite the fact that p85α is ubiquitously expressed and can pair with 

p110α and p110β in addition to p110δ. There is some evidence for effects of the PIK3R1 
mutation outside the immune system (for example, short stature, Box 1)74, but detailed 

analyses of the effects of this p85α defect on p110α or p110β have not yet been reported. 

The biochemical and clinical symptoms of patients with APDS1 (PIK3CD mutations) or 

APDS2 (PIK3R1 mutations) are similar, suggesting that the pathological features of both 

syndromes are a consequence of aberrant and hyperactive PI3Kδ signalling1–4. Here we use 

the generic term APDS unless referring specifically to either. A milder form of APDS-like 

immunodeficiency has been described in Cowden disease, caused by heterozygous loss of 

PTEN, although the increases in PIP3 and pAKT levels from these patient T cells was less 

obvious than observed in the T cells from patients with APDS69, 75.

The most frequent mutation in PIK3CD (c.3061G>A; OMIM 602839 http://www.omim.org/

entry/602839#0001) encodes a glutamic acid for lysine substitution at position 1021 

(E1021K) of p110δ (Table 1). To date, this mutation has only been found in APDS patients 

and their affected family members but not among healthy unrelated subjects1. Patients with 

the E1021K mutation have been found across continents and ethnicities. Genetic analysis 

showed no founder effect, demonstrating that E1021K is a recurrent mutation that appeared 

de novo independently in multiple unrelated families1.

p110δ with the E1021K mutation has increased lipid kinase activity, as shown using 

recombinant proteins in vitro and by measuring PIP3 and AKT phosphorylation levels in 

patient-derived T cells1, 2. The E1021K mutation is located in the C-terminal lobe of the 

kinase domain of p110δ, similarly to the oncogenic H1047R mutation of p110α, and 

enhances the membrane association of p110δ in vitro, facilitating more effective 

phosphorylation of its lipid substrate PtdIns(4,5)P2; this increases accumulation of PIP3 and 

lowers the activation threshold of PI3Kδ1, 17 (Fig 3). Other missense p110δ mutations — 

N334K, C416R and E525K — have also been shown to cause APDS, although they are less 

frequent than E1021K2 (Table 1). Interestingly, GOF mutations of the homologous amino 

acid residues of p110α (N345, C420 and E545, respectively), have been identified in tumors 

(http://www.sanger.ac.uk/genetics/CGP/cosmic/) and are thought to interfere with the 

inhibitory contacts imposed by p85α and hence increase the lipid kinase activity of the p110 

subunit17; this implies that a similar mechanism may lead to enhanced PIP3 accumulation in 

cells from patients with APDS with the equivalent mutations and hence the immune 

modulation seen in APDS (Fig 4). APDS is thus distinct from most other PIDs in that it is 
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the hyperactivation of signaling pathways, rather than their inhibition, that leads to immune 

dysfunction. This distinction offers unique therapeutic opportunities (see below).

A heterozygous splice site mutation before exon 11 of the PIK3R1 gene leads to an in-frame 

fusion of exon 10 with exon 12, resulting in the deletion of 42 amino acids in p85α (del p.

434 – 475, OMIM: http://omim.org/entry/616005) p55α and p50α3, 4(Fig 3). These amino 

acids lie in the inter-SH2 domain that regulates the activity of the catalytic p110 subunits76. 

Oncogenic mutations in this region result in mutant proteins that can bind p110 subunits but 

are less effective at inhibiting their enzymatic activity76, 77. Similar to mutations in the 

p110δ subunit, this is thought to lower the threshold of activation for PI3Kδ. The mutant 

p85αdel434–475 protein (Fig 4, ΔEx11) was shown to stabilize p110δ, which was expressed at 

near normal levels in patient cells, but its inhibitory function was impaired, leading to 

increased PI3Kδ activity3, 4. Because the net effect of the p85α (del p.434 – 475) is 

increased PI3Kδ activity, we consider it as a GOF mutation, even though it is strictly 

speaking a mutation resultin in loss of inhibitory function.

Thus, a number of different mutations in PIK3R1 or PIK3CD lead to increased activity of 

PI3Kδ, either by disrupting inhibitory contacts between p85α and p110δ or by increasing 

the affinity of p110δ for the plasma membrane, promoting its interaction with the lipid 

substrate and hence facilitating phosphorylation of PtdIns(4,5)P2.

Activating PI3Kδ mutations lead to impaired B cell function and vaccine responses

Immunoglobulin levels in patients with APDS are variable, ranging from isolated specific 

antibody deficiency or IgG subclass deficiency to severe hypogammaglobulinemia, often 

with increased IgM levels. In one cohort, 10% of a heterogeneous PID cohort who suffered 

recurrent infections were found to have APDS1, whereas in a second cohort of mainly 

antibody-deficient PID patients, fewer than 1% had PIK3CD mutations5.

Most APDS patients have increased proportions of circulating transitional B cells , reduced 

class-switched memory B cells, and impaired vaccine responses1,3. In vitro, APDS patient-

derived B cells showed impaired CSR (consistent with the observed tendency for these 

patients to have reduced IgG and increased IgM levels), but in contrast to the findings in 

mouse cells, this was not associated with reduced AICDA mRNA levels2. As noted above, it 

is possible that PI3K regulates AID function by post-transcriptional mechanisms as well as 

by regulation of mRNA expression35. Alternatively, the defective CSR in APDS patients 

could be due to defects in germinal centre Tfh cells78, aberrant B cell maturation and/or 

defective migration of B cells during the germinal centre reaction in the spleen, as shown for 

FOXO1-deficient B cells in mice37, 38. The basis for the increased percentage of circulating 

transitional B cells in patients with APDS remains incompletely understood, but is likely to 

be a consequence of impaired B cell maturation and/or an increased propensity for mature B 

cells to undergo apoptosis1. These findings are in marked contrast to the dramatic loss of B 

cells and agammaglobulinemia seen in the rare patients with LOF mutations in PIK3R1 or 

PIK3CD.

Encapsulated bacteria (Haemophilus influenzae and Streptococcus pneumoniae) are the 

most frequent respiratory isolates from patients with APDS (Box 1), which is consistent 
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with a substantial defect in antibody-mediated immunity. However, the severity of 

respiratory infections and resulting structural damage in the lungs do not correlate well with 

the reduction in B cell numbers or the extent of immunoglobulin deficiency6, 7, and 

immunoglobulin replacement therapy alone does not appear to limit the progress of lung 

damage in patients with APDS 6, 7. One explanation for this apparent discrepancy is that 

PI3Kδ hyperactivation causes additional defects (such as altered T cell functions or innate 

immune cell dysfunction) that also contribute to an increased susceptibility to respiratory 

bacterial infections. As mentioned above, PI3Kδ has been shown to promote ROS 

production by human neutrophils, which could cause collateral damage if excessively 

produced during infections62. However, analysis of APDS patient neutrophils did not reveal 

an obvious increase in ROS production, or indeed in PIP3 production, in response to 

stimulation with microbial peptides1. However, the increased susceptibility of patients with 

APDS to staphylococcal skin infections and abscess formation1, 65, as well as defective 

killing of mycobacteria by macrophages from an APDS patient64, suggest that 

abnormalities may indeed exist in the innate immune system which remain to be more 

completely investigated. Increased PI3K activity has been shown to compromise the 

migratory accuracy of neutrophils, and hence prolong their tissue-transit time, leading to 

increased opportunities for bystander tissue injury mediated by surface-associated neutrophil 

proteases79. Hence a wide range of impaired immune cell functions, affecting both innate 

and adaptive immune responses, may contribute to recurrent infection and bronchiectasis in 

patients with APDS.

Activating PI3Kδ mutations cause T cell senescence

Peripheral blood analysis revealed an increase in effector-type T cells with a severe 

reduction in naïve T cell numbers1–4. Freshly isolated peripheral blood cells demonstrated 

reduced secretion of cytokines and increased apoptosis upon TCR restimulation1–3. 

Unexpectedly, acute PI3Kδ inhibition in T cells from APDS patients reduced TCR-triggered 

apoptosis, suggesting a previously unappreciated role for PI3Kδ signalling in pro-apoptotic 

pathways1, 3. However, T cell blasts that had escaped apoptosis and expanded after 

activation in vitro showed increased production of IFNγ, TNF and granzyme B2. Thus, 

chronic hyperactivation of PI3Kδ signalling promotes T cell differentiation into terminal 

effector cells with increased sensitivity to TCR-induced cell death and dysregulation of 

cytokine secretion.

Notably, the expression of CD57, which is a marker of senescence on CD8+ T cells 80, was 

consistently high on patient cells2, 4. Subsequent analyses confirmed shortening of telomere 

length in APDS patient lymphocytes4, suggesting T cell senescence contributes to immune 

dysfunction in APDS patients. Patients free from viraemia also presented with increased 

numbers of CD57+CD8+ T cells2; therefore, CD8+ T cell senescence in APDS is likely to be 

distinct from T cell exhaustion driven by chronic viral infections. T cell senescence due to 

telomere shortening results in cell cycle arrest while maintaining most other responses to 

antigen81, whereas T cell exhaustion from chronic antigen stimulation results in the 

upregulation of co-inhibitory receptors that broadly dampen TCR signalling and antigen 

responsiveness82. These findings point to in vivo hyperproliferation (which is consistent 

with enlarged spleen and lymph nodes) as the underlying cause of the T cell senescence and 
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short telomeres in APDS patients and support the connection between cell division and 

effector T cell differentiation.

T cells from APDS patients exhibit increased activity of mTOR2, a key mediator of the 

switch from a catabolic naïve state to an anabolic effector state during a T cell response83. 

Increased glucose uptake is also observed in T cells from APDS patients compared with 

healthy subjects2, 4. These findings indicate that changes in T cell metabolism induced by 

hyperactive PI3Kδ signalling may underlie the hyperproliferation associated with T cell 

senescence in APDS patients. Further studies will be needed to determine if elevated mTOR 

activity is a direct consequence of increased PI3Kδ activity or whether it also reflects the 

skewed effector phenotype of T cells in APDS patients. PI3Kδ inhibition reduced, but did 

not ablate, phosphorylation of S6K (a component of the mTOR signalling pathway) in 

APDS T cells, confirming that PI3Kδ contributes to mTOR activity in these cells4. 

Therefore, unrestrained and prolonged PI3Kδ and mTOR activity may drive APDS T cells 

towards senescence rather than allowing T cells to revert to a metabolically quiescent 

phenotype after antigen exposure (Fig 3).

The main clinical manifestation of abnormal T cell function in APDS is herpes viral 

infection. All of the patients with PIK3CD mutations that were described by Lucas et al.3 

experienced chronic Epstein–Barr virus (EBV) and/or cytomegalovirus (CMV) viremia; in 

other studies the occurrence of CMV/EBV was lower1, 4–7, although herpes simplex virus 

and varicella zoster virus infections were also noted. These inter-study differences may 

reflect the case-finding strategies, immune profiles and/or pathogen exposure of the patients. 

Surprisingly, given the abnormal T cell profiles, few other opportunistic infections have been 

reported. Some cases of problematic viral warts and molluscum contagiosum have been 

identified7, perhaps suggesting impaired NK cell function, though this has yet to be 

confirmed experimentally.

Treatment options for patients with APDS

As APDS patients often present with reduced IgG levels or respond poorly to vaccines, 

many are treated with immunoglobulin replacement therapy that is often supplemented with 

prophylactic antibiotics. While this may have been effective in some patients, it has not 

prevented the acquisition or progression of bronchiectasis in others, even when the treatment 

was initiated in childhood6, 7. Haematopoietic stem cell transplantation (HSCT) is a 

treatment option, particularly for younger patients. HSCT could also help prevent or treat 

malignant B cell transformation, which occurs in 10–15% of patients. Several patients have 

undergone HSCT and, although significant improvements have been noted6, 7, the follow up 

of these patients is too short to make a definitive conclusion.

Rapamycin

Lucas and colleagues reported use of the mTOR inhibitor rapamycin in one patient, who 

showed a dramatic reduction in lymphadenopathy and hepatosplenomegaly and 

improvement in T cell subset defects2. Similar improvements have been noted in a recent 

case report of a four year old boy also treated with rapamycin68. However, the effect of 

rapamycin on B cell homeostasis and humoral immune responses in APDS patients remains 

Lucas et al. Page 11

Nat Rev Immunol. Author manuscript; available in PMC 2017 May 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



to be determined. It is important to keep in mind that PI3Kδ regulates other pathways in 

addition mTOR, and conversely, that mTOR is also regulated byPI3K-independent 

pathways8. Moreover, mTOR regulates the expression of PTEN such that treatment of T 

cells with rapamycin can actually increase PI3K signalling in T cells84, potentially 

exacerbating aspects of hyperactive PI3Kδ signalling in APDS.

PI3Kδ inhibitors

The PI3Kδ inhibitor idelalisib is licenced for use in chronic lymphocytic leukaemia and non-

Hodgkin lymphoma85, 86. However, idelalisib has a considerable side-effect profile, 

including pneumonitis, pneumonia, transaminitis and colitis in up to 42% of patients 

treated49. Histologically, the colitis in these patients is reminiscent of that seen in mice 

lacking functional PI3Kδ, suggesting it is an on-target effect rather than a compound-

specific effect49. It is possible that APDS patients will benefit from lower doses of PI3Kδ 
inhibitors, which are effective for the treatment of B cell lymphomas, and hence may be 

spared some of the more severe side effects. Another possibility is that topical 

administration of the PI3Kδ inhibitor may avoid some of the adverse effects.

Two clinical trials of PI3Kδ inhibitors in patients with APDS have recently been announced: 

NCT02435173 sponsored by Novartis for an oral PI3Kδ inhibitor and NCT02593539 

sponsored by GlaxoSmithKline for an inhaled PI3Kδ inhibitor. To correct systemic immune 

defects, including lymphoproliferation and lymphoma, an oral inhibitor is more likely to be 

effective; however, an inhaled inhibitor is expected to have a better safety profile and may be 

appropriate for patients who are primarily affected by airway infections and potentially may 

limit progression of bronchiectasis.

Conclusions

GOF mutations in PI3Kδ lead to a range of B and T cell developmental and functional 

defects that compromise host defence, leading to recurrent bacterial and viral infections 

(Box 1). This distinguishes APDS patients from patients with LOF of PI3Kδ who present 

with much more severe B cell lymphopenia and agammaglobulinemia, but not T cell 

senescence. In general, GOF mutations are unusual causes of immune deficiency87. The 

therapeutic options for LOF of PI3Kδ may be limited to immunoglobulin replacement 

therapy, bone marrow transplants and perhaps gene therapy. Although these are also options 

for APDS, existing (mTOR inhibitors) and emerging (PI3Kδ inhibitors) therapeutics offer 

the additional possibility of correcting the biochemical defects that arise from APDS-

associated mutations, and the impact of these agents is currently being explored.

The fact that both LOF and GOF PI3Kδ mutations lead to immunodeficiencies highlights 

the concept that this pathway must be precisely and dynamically modulated for optimal 

immune cell function: too much, too little or the inability to turn the pathway on or off as 

needed, has detrimental consequences (Fig 3) 8. These considerations raise the possibility 

that aberrant PI3K signalling in immune cells may also occur in non-genetic diseases or 

conditions that lead to increased susceptibility to infections.
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Many fundamental questions remain to be answered. How common is APDS among PID 

patients? What are some of the genetic or environmental influences that lead to the clinical 

heterogeneity of APDS patients? Are there mutations in other genes that lead to 

hyperactivation of PI3Kδ and APDS-like syndromes? Why do APDS T cells undergo 

apoptosis when stimulated? Why does recurrent airway infection lead to bronchiectasis more 

frequently in APDS patients than in other PIDs? Can PI3Kδ inhibitors restore normal 

immune function in APDS? The answers to these and further questions will require more 

detailed analysis of APDS patient cohorts, genetic screening of larger PID cohorts, and 

establishment of mouse models that mimic this intriguing new disease and help evaluate 

different therapeutic strategies.
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Glossary terms

Activated PI3Kδ syndrome (APDS)
The term APDS encompases two syndromes: APDS1 (also known as PASLI-CD), which 

result from a mutation in the PIK3CD gene that lead to the hyperactivation of the p110δ 
subunit of PI3Kδ; and.APDS2 (also known as PASLI-R1), which results from splice 

mutations in PIK3R1 that lead to exon skipping and produces a truncated p85α protein with 

reduced inhibition of p110δ.

Activation-induced cytidine deaminase (AID)
An enzyme that is required for two crucial events in the germinal centre: somatic 

hypermutation and class-switch recombination.

Germinal centre reaction
Germinal centres are specialised structures within spleens and lymph nodes where B cells 

present antigen to T cells and in return, are selected to undergo CSR and SHM.

Hypogammaglobulinemia
An immune disorder characterised by low serum IgG levels.

Immune complexes
Complexes of antigen bound to antibody and, sometimes, components of the complement 

system. The levels of immune complexes are increased in many autoimmune disorders, in 

which they become deposited in tissues and cause tissue damage.

Class-switch recombination (CSR)
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The process by which proliferating B cells rearrange their DNA to switch from expressing 

IgM (or another class of immunoglobulin) to expressing a different immunoglobulin heavy-

chain constant region, thereby producing antibody with different effector functions.

T cell-independent (TI) antibody response
An antibody response to polymeric antigens, such as polysaccharides and lipids, that does 

not require T cell help.

Primary immunodeficiency (PID)
An inherited disorder of the immune system that leads to recurrent infections and/or immune 

dysregulation. Currently there are around 84,000 patients diagnosed worldwide with PID.

Somatic hypermutation (SHM)
A unique mutation mechanism that is targeted to the variable regions of rearranged 

immunoglobulin gene segments. Combined with selection for B cells that produce high-

affinity antibody, SHM leads to affinity maturation of B cells in germinal centres.

T follicular helper cells (Tfh cells)
CD4+ T helper cells that are essential for the induction of class switching in the germinal 

centres of secondary follicles during antibody responses to T cell-dependent antigens.

Transitional B cells
Immature B cells that have left the bone marrow for the spleen and are precursors of 

follicular B cells, marginal zone B cells and B1 B cells.

Senescence
A state in which a cell fails to progress through the cell cycle due to activation of the DNA 

damage response, which can occur upon extreme shortening of telomeres.
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Box 1

Clinical features of APDS

Patients with APDS display features of both immune deficiency and of immune 

dysregulation:

• Recurrent lung, ear and sinus infections (with encapsulated bacteria such as 

Haemophilus influenzae and Streptococcus pneumoniae, which require 

opsonisation for effective killing) are near-universal and are associated with a 

high incidence of organ damage including hearing impairment and 

bronchiectasis (permanent airway scaring)1–4.

• Severe, recurrent or persistent infections with herpes family viruses are 

common, in particular chronic EBV or CMV viremia, and HSV and VZV 

infections1, 3–7. Frequent isolates of some respiratory viruses such as 

adenovirus and echovirus have also been described 1.

• Opportunistic infections are rare, although a few patients have experienced 

recurrent viral warts or molluscum contagiosum infections49.

• An increased incidence of abscess formation, lymphadenitis and cellulitis 

with gram-positive bacteria (mainly Staphylococcus aureus), and defective 

killing of mycobacteria by macrophages isolated from a patient with APDS 

suggest a mild deficit in innate immunity1, 64.

• Benign lymphoproliferation (lymphadenopathy, hepatosplenomegaly and 

focal nodular lymphoid hyperplasia) is a common feature of all patients with 

APDS that have been studied to date.

• Histopathological analysis of lymphoid tissue from affected patients 

demonstrates atypical follicular hyperplasia with attenuation of mantle zones 

in APDS1, and small B cell follicles in APDS2. Germinal centres were 

disrupted by infiltrating T cells (often PD1-positive) in both APDS1 and 

APDS2 6, 7.

• There is a high frequency of lymphoma associated with APDS, encompassing 

a wide range of histopathological patterns1, 2, 7, 65, 67.

• Immune cytopenias (thrombocytopenia, haemolytic anaemia and neutropenia) 

and autoimmune-like solid organ conditions (such as juvenile arthritis, 

glomerulonephritis, thyroiditis and sclerosing cholangitis) have also been 

reported7, 66, with a frequency of 34% in a cohort of 53 patients with APDS1 

7 and 17% in a cohort of 36 patients with APDS2 6.

• Mild developmental delays has been observed in both APDS1 and APDS2 

cohorts, with a higher incidence in APDS2 (31% versus 19%) 6, 7.

• Growth retardation is common in patients with APDS2 6, 73, 74 but does not 

seem to be a feature of APDS1 and may relate to the association of 

heterozygous mutations in PIK3R1 with SHORT syndrome (short stature, 
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hyperextensibility of joints, hernia, ocular depression, Rieger anomaly and 

teething delay)88–91.
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Box 2

Lessons learned from APDS

Although the normal physiological role of PI3Kδ has been extensively studied in mouse 

models, investigation of patients with APDS has provided important new insights about 

the biology of this kinase in humans.

• Mutations causing LOF or GOF of PI3Kδ lead to immunodeficiency. This 

illustrates how this pathway needs to be dynamically regulated for normal 

immune cell function.

• The previously reported roles for PI3Kδ in B cell function and humoral 

immunity did not predict the increase of transitional B cell numbers that have 

been observed in APDS patients.

• Defects in CSR that are not attributable to defective AICDA mRNA 

expression (encoding AID) remain to be fully understood.

• Augmented PI3Kδ results in a loss of naïve T cells and an in vivo 
proliferative burst that causes lymphoproliferative disease and drives the T 

cells toward cellular senescence (a phenotype that is poorly mimicked in 

mouse models due to long telomeres).

• Moreover, patient T cells are highly susceptible to TCR restimulation-induced 

cell death, indicating a previously unappreciated role for PI3Kδ in a pro-

apoptotic signalling pathway.

• The high proportion of patients with severe respiratory infections and 

bronchiectasis suggests a role for PI3Kδ in promoting inflammation of the 

lungs by mechanisms that are incompletely understood, but which may 

indicate a key role for PI3Kδ in airway-associated innate immune responses, 

in addition to its role in humoral immunity.

• Previously, LOF point mutations in PIK3R1 were shown to cause SHORT 

syndrome 88–91. It is unclear why the ΔEx11 mutations that cause APDS2 

manifest primarily as PID; however, it is of interest to note at least one case 

where this mutation was suggested to relate to SHORT syndrome 73. This 

indicates that PIK3R1 ΔEx11 may have distinct effects on different p110 

isoforms in different tissues.
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• PI3Kδ is a key signal transduction node in cells of the immune system. This 

kinase complex is acutely activated in B cells and T cells after exposure to 

antigen and controls many aspects of lymphocyte development and 

differentiation, in part via the AKT, FOXO1 and mTOR pathways.

• Rare loss-of-function mutations in PI3Kδ also cause immunodeficiency and 

immune-mediated pathologies, including colitis. The PI3Kδ inhibitor 

idelalisib causes frequent colitis at doses tested in leukaemia/lymphoma trials, 

possibly due to effects on Treg.

• Activated PI3Kδ Syndrome (APDS) is a newly described primary 

immunodeficiency caused by hyperactive PI3Kδ signalling and resultant T 

cell senescence/death and impaired antibody responses. APDS is generally 

characterized by recurrent sinopulmonary infections with structural lung 

damage, viremia with herpes family viruses, lymphoproliferative disease, and 

increased risk of B cell malignancies.

• APDS1 patients have a heterozygous mutation in PIK3CD, the gene encoding 

the p110δ catalytic subunit of PI3Kδ, whereas APDS2 patients have a 

heterozygous mutation in PIK3R1, the gene encoding the p85α regulatory 

subunit of PI3Kδ. Both sets of mutations lead to higher intrinsic activity of 

PI3Kδ.

• To date, most APDS patients have been treated with antibody replacement 

therapies and some with the mTOR inhibitor rapamycin. In the future, PI3Kδ 
inhibitors may be used to treat APDS patients, possibly as the first example of 

targeted therapy against a hyperactive mutant kinase in primary 

immunodeficiency.
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Figure 1. BCR signaling
PI3Kδ is a heterodimeric enzyme, typically composed of a p85α regulatory subunit and a 

p110δ catalytic subunit. In B cells, PI3Kδ is activated upon cross-linking of the BCR, after 

stimulation with IL-4 or by the chemokine CXCL13 via CXCR5. The BCR co-opts the co-

receptor CD19 or the adapter protein BCAP, both of which have YXXM motifs to which the 

p85α SH2 domains can bind. The IL-4R co-opts IRS1, which also has YXXM motifs. The 

mechanism whereby CXCR5 is coupled to PI3Kδ remains to be defined (indicated by a 

dotted line). PI3Kδ signalling through AKT promotes the activation of mTOR and 

suppresses FOXO1 function (via phosphorylation-dependent nuclear export). FOXO1 is a 

transcription factor that activates the genes encoding RAG proteins involved in V(D)J 
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recombination, IKAROS which is required for early B cell development, CD62L which is 

required for homing to lymph nodes and AID, which is required for CSR and SHM. The 

amino acid sensor mTOR contributes to the growth and proliferation of B cells. All proteins 

coloured in green have been affected by LOF mutations causing PID. Of these, only p85α 
and p110δ have also been affected by GOF mutations causing APDS.
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Figure 2. TCR signaling
PI3Kδ is a heterodimeric enzyme, typically composed of a p85α regulatory subunit and a 

p110δ catalytic subunit. In T cells, the TCR, the costimulatory receptor ICOS and the IL-2R 

can activate PI3Kδ. ICOS contains a YXXM motif in the cytoplasmic domain which is 

essential for ICOS-mediated co-stimulation. Precisely how the TCR activates PI3Kδ remains 

incompletely understood, though TCR ligation is known to induce ZAP70-mediated 

phosphorylation of LAT. Whether PI3K binds LAT directly or via other adapter proteins 

remains to be established. Mechanisms of PI3Kδ activation downstream of IL-2R are even 
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less clear, but a role for JAK3 has been implicated. PI3Kδ contributes to the downregulation 

of the expression of IL-7Rα and CD62L,via the AKT-dependent inactivation and nuclear 

export of FOXO1, preparing the T cell to exit the lymph nodes and circulate through the 

vascular systems and organs. PI3Kδ also increases metabolism and contributes to T cell 

effector-associated phenotypes by promoting activation of mTOR.
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Figure 3. Dynamic regulation of PI3Kδ signaling in the immune system
PI3Kδ activity needs to be dynamically regulated for normal immune cell function, as some 

cell types and processes require high PI3Kδ activity, while other depend on low PI3Kδ 
activity (e.g., if they require FOXO1-dependent gene transcription). Problems arise if cells 

cannot increase or suppress PI3Kδ due to mutations, and have chronically low or high 

PI3Kδ activity. Immunosuppression is associated with loss-of function and gain-of-function 

in PIK3CD, which encoded the PI3Kδ subunit p110δ. Illustrated are some key cell types and 

processes affected by high or low PI3Kδ activity, and the consequences of being locked in 

one state or the other.

In the healthy state (top), PI3Kδ signalling is low in naïve and memory T cells, which are 

characterised by low mTOR and metabolic activity and high expression of FOXO1-

dependent lymph node homing receptors. In activated effector T cells, PI3Kδ activity is high 

as a consequence of TCR, IL2R and ICOS signalling. Effector T cells are also characterised 

by high mTOR and metabolic activity, whereas FOXO1-dependent expression of lymph 

node homing receptors is reduced.

Inhibition of PI3K signalling during thymic development is thought to favour the 

development of Treg. However, PI3Kδ activity is required to maintain normal numbers of 

Treg cells in the peripheral lymphoid tissues and for Treg to adopt an effector phenotype, 

especially peripheral tissues.

Maintainenance of low-level signaling (also referred to as tonic signalling) via PI3Kδ (and 

to a lesser extent PI3Kα) maintains survival of naïve follicular B cells. Upon activation, 

PI3K is increased and this contributes to B cell proliferation. However, for B cells to 

undergo CSR in the GC, PI3Kδ signalling needs to be tuned back down to allow higher 

FOXO1 transcription and proper AID targeting.

In disease states (bottom) caused by gain-of-function or loss-of-function in PI3Kδ, the 

proper dynamics of signalling result in cellular defects associated with immunodeficiency. 

Chronically high PI3Kδ activity leads to T cell (more senescence, death, and Tregs) and B 

cell (more transitional B cells and less CSR and SHM) abnormalities with increased 

susceptibility to B cell lymphoma, infections, and lymphoproliferative disease. Chronically 

low PI3Kδ activity leads to a different set of T cell (poor responses and low Tregs) and B 

cell (low numbers) abnormalities resulting in prevalent infections and colitis.
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Figure 4. APDS mutations lower the threshold of PI3Kδ activation
a | Schematic diagram of the protein domains in the p85α regulatory and p110δ catalytic 

subunits with mapped interactions shown with lines, where the black line indicates the 

binding interaction mediated constitutive interaction and the red lines indicate inhibitory 

contacts. The locations of the described amino acid substitutions caused by APDS mutations 

are indicated. ABD: adaptor-binding domain, RBD: RAS-binding domain, SH3: SRC-

homology 3 domain, P: proline-rich region, BH: breakpoint-cluster region homology 

domain, SH2: SRC-homology 2 domain, N-: N-terminal, C-: C-terminal, i-: inter-.
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b | Class IA PI3Ks are activated by their recruitment to tyrosine kinase-associated receptors 

at the plasma membrane. The p85α regulatory subunit (p50 fragment containing the N-

SH2–i-SH2–C-SH2 domains, shown here in blue) stabilizes the p110δ catalytic subunit 

(orange) through constitutive binding of the p85α i-SH2 domain (coiled portion) to the 

p110δ adaptor-binding domain (ABD). Binding of the p85α SH2 domains to tyrosine-

phosphorylated residues on an activated receptor releases the inhibitory contacts between the 

p85α SH2 domains and the p110δ C2, helical and kinase domains (shown in red in part a). It 

is possible that the ΔEx11 mutation (red) that truncates the p85α inter-SH2 domain affects 

p110δ more than it affects p110α, hence the lack of more dramatic pleiotropic effects on 

growth and metabolism in individuals with this deletion. Ras–GTP further tethers p110δ to 

the membrane by binding to the Ras-binding domain (RBD) of p110δ. GOF mutations in 

PIK3R1 and PIK3CD increase kinase activity by interfering with inhibitory interactions 

between the p85α regulatory and p110δ catalytic subunit (ΔEx11, N334K, C416R and 

E525K), or by increasing the affinity of p110δ for the plasma membrane (E1021K). The 

E1021K mutations may also interfere with inhibitory contacts from the p85α C-SH2 

domain1. See ref (17) and references therein for further details of the structures and 

mechanisms of regulation of PI3Kδ.
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Table 1
PI3K subunits and APDS mutations

PI3K class Gene Protein Expression Selected functions APDS-associated mutations**

Catalytic subunits

Class IA PIK3CA p110α Ubiquitous • Metabolism

• Angiogenesis

ND

PIK3CB p110β Ubiquitous • Metabolism

• Neutrophil activation

ND

PIK3CD p110δ Haematopoietic cells 
and CNS

• Immunity

Class IB PIK3CG p110γ Haematopoietic cells 
and heart

• Immunity

• Metabolism

• Cardiac

N334K (1) 2
C416K (2) 65
E525K (7) 2, E525A (3)69
E1021K (63) 1, 2, 5, 7, 63–69

Regulatory subunits

Class IA PIK3R1 p85α, p55α, p50α Ubiquitous • Metabolism

• Immunity

del p.434-475 (43) 3, 4, 6, 70–
74

PIK3R2 p85β Ubiquitous • Metabolism

• Immunity

ND

PIK3R3 p55γ Brain and testes • Unknown ND

Class IB PIK3R5 p101 Haematopoietic cells • Immunity ND

PIK3R6 p84* Haematopoietic cells • Immunity ND

*
Also known as p87.

**
Number of cases reported in brackets. ND, none described
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